Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Fakhriah Kamaruddin, Mohamed Nor Zalipah
    MyJurnal
    This study aimed to determine the potential pollinating agents of Ixora coccinae and Ruellia simplex at Universiti Malaysia Terengganu (UMT) campus based on the foraging activities of the flower visitors. The diurnal observations (0700 hr to 1800 hr) were conducted for a total of 144 hours and 96 hours for I. coccinae, for R. simplex respectively. The flower visitor activities (landing or hovering at the flowers) and the time spent at the flowers however were recorded for only the first 10 minutes of every hour between 0700 hr and 1000 hr for four days. A total of 383 flower visitations was recorded by 17 insect species and a bird species, the olive-backed sunbird (Cinnyris jugularis). For I. coccinae, the most common visitors were Apis cerana, Heterotrigona itama and Xylocopa confusa, in which all species were found to show only landing behaviour to forage at the flowers, and the time spent foraging at the flowers was not significantly different between the species (Kruskal-Wallis test, H = 1.323, df = 2, p = 0.055). For R. simplex, the most common visitors were A. cerana with 100% landing, and C. jugularis which recorded 80% landing and 20% hovering during their visits to the flowers. Between the two, A. cerana recorded significantly longer time spent at the flowers as compared to C. jugularis (Mann-Whitney test, U = 17.355, p < 0.001). Based on the visitation rate and feeding behaviour of the flower visitors, A. cerana, H. itama and X. confusa were the potential pollinating agents for I. coccinae while for R. simplex, A. cerana showed higher potential to be a pollinating agent as compared to C. jugularis. Therefore, this study highlighted the importance of recording the behaviour of each flower visitor to determine the relative contribution to the pollination success of the plant species visited.
    Matched MeSH terms: Pollination
  2. Sulaiman B, Boyce PC
    Trop Life Sci Res, 2010 Dec;21(2):85-90.
    PMID: 24575201 MyJurnal
    Homalomena galbana Baharuddin S. & P.C. Boyce is described from the Maliau Basin Conservation Area, Sabah, representing the first species of the Homalomena Supergroup to be recorded from Sabah, and the first mesophytic species of the Supergroup to be described from Borneo. The species is illustrated and a brief discussion on the pollination role of interpistillar staminodes is presented.
    Matched MeSH terms: Pollination
  3. Muhammad Aiman, Mohammad Rahimi, Siti Zaharah Sakimin, Mohd Fauzi, Ramlan
    MyJurnal
    Ficus carica L. or fig is the oldest fruit tree that being cultivated by man. Grouped under genus Ficus, this species is grown widely in Mediterranean region and now being cultivated in an area with temperate or sub-temperate climate. Fig planting in Malaysia is still new, which was brought by a man as a hobby at first. Fig is a unique fruit tree as some variety can produce fruits without pollination. Contain lots of carbohydrates, essential amino acids, vitamins and minerals such potassium, fibre, calcium, iron compared to other fruits, fig have become an important source of diet to people especially in Mediterranean region since ancient time.
    Matched MeSH terms: Pollination
  4. Ong P, Chen S, Tsai CY, Chuang YK
    PMID: 33744842 DOI: 10.1016/j.saa.2021.119657
    In this study, near-infrared (NIR) spectroscopy was exploited for non-destructive determination of theanine content of oolong tea. The NIR spectral data (400-2500 nm) were correlated with the theanine level of 161 tea samples using partial least squares regression (PLSR) with different wavelengths selection methods, including the regression coefficient-based selection, uninformative variable elimination, variable importance in projection, selectivity ratio and flower pollination algorithm (FPA). The potential of using the FPA to select the discriminative wavelengths for PLSR was examined for the first time. The analysis showed that the PLSR with FPA method achieved better predictive results than the PLSR with full spectrum (PLSR-full). The developed simplified model using on FPA based on 12 latent variables and 89 selected wavelengths produced R-squared (R2) value and root mean squared error (RMSE) of 0.9542, 0.8794 and 0.2045, 0.3219 for calibration and prediction, respectively. For PLSR-full, the R2 values of 0.9068, 0.8412 and RMSEs of 0.2916, 0.3693, were achieved for calibration and prediction. Also, the optimized model using FPA outperformed other wavelengths selection methods considered in this study. The obtained results indicated the feasibility of FPA to improve the predictability of the PLSR and reduce the model complexity. The nonlinear regression models of support vector machine regression and Gaussian process regression (GPR) were further utilized to evaluate the superiority of using the FPA in the wavelength selection. The results demonstrated that utilizing the wavelength selection method of FPA and nonlinear regression model of GPR could improve the predictive performance.
    Matched MeSH terms: Pollination*
  5. Wahizatul Afzan Azmi, Roziah Ghazi, Nor Zalipah Mohamed
    Sains Malaysiana, 2012;41:1057-1062.
    A study on the importance of Xylocopa varipuncta (Hymenoptera: Apidae) as pollination agent was conducted at the Setiu Mangrove Forest, Terengganu from September to December 2010. The objective of this study was to identify the pollens collected by carpenter bees (X. varipuncta) in the mangrove community of Setiu Wetlands. A total of 35 types of pollens were collected from the body of X. varipuncta and only 10 types of the pollens were successfully identified. The identified pollens were of Avicennia alba, Lumnitzera racemosa, Sonneratia caseolaris, S. ovata and Rhizophora apiculata from exclusive mangroves, while Suregada multiflora, Melaleuca cajuputi, Derris trifoliata, Acacia auriculiformis and Hibiscus tiliaceus were from non-exclusive mangroves. Melaleuca cajuputi was the highest number of pollen carried by X. varipuncta. This study showed that X. varipuncta is an important pollen carrier in the mangrove community of Setiu Wetlands, Terengganu.
    Matched MeSH terms: Pollination
  6. Gardner EM, Bruun-Lund S, Niissalo M, Chantarasuwan B, Clement WL, Geri C, et al.
    Proc Natl Acad Sci U S A, 2023 Jul 11;120(28):e2222035120.
    PMID: 37399402 DOI: 10.1073/pnas.2222035120
    Studies investigating the evolution of flowering plants have long focused on isolating mechanisms such as pollinator specificity. Some recent studies have proposed a role for introgressive hybridization between species, recognizing that isolating processes such as pollinator specialization may not be complete barriers to hybridization. Occasional hybridization may therefore lead to distinct yet reproductively connected lineages. We investigate the balance between introgression and reproductive isolation in a diverse clade using a densely sampled phylogenomic study of fig trees (Ficus, Moraceae). Codiversification with specialized pollinating wasps (Agaonidae) is recognized as a major engine of fig diversity, leading to about 850 species. Nevertheless, some studies have focused on the importance of hybridization in Ficus, highlighting the consequences of pollinator sharing. Here, we employ dense taxon sampling (520 species) throughout Moraceae and 1,751 loci to investigate phylogenetic relationships and the prevalence of introgression among species throughout the history of Ficus. We present a well-resolved phylogenomic backbone for Ficus, providing a solid foundation for an updated classification. Our results paint a picture of phylogenetically stable evolution within lineages punctuated by occasional local introgression events likely mediated by local pollinator sharing, illustrated by clear cases of cytoplasmic introgression that have been nearly drowned out of the nuclear genome through subsequent lineage fidelity. The phylogenetic history of figs thus highlights that while hybridization is an important process in plant evolution, the mere ability of species to hybridize locally does not necessarily translate into ongoing introgression between distant lineages, particularly in the presence of obligate plant-pollinator relationships.
    Matched MeSH terms: Pollination/genetics
  7. Masuda S, Tani N, Ueno S, Lee SL, Muhammad N, Kondo T, et al.
    PLoS One, 2013;8(12):e82039.
    PMID: 24391712 DOI: 10.1371/journal.pone.0082039
    Pollinator syndrome is one of the most important determinants regulating pollen dispersal in tropical tree species. It has been widely accepted that the reproduction of tropical forest species, especially dipterocarps that rely on insects with weak flight for their pollination, is positively density-dependent. However differences in pollinator syndrome should affect pollen dispersal patterns and, consequently, influence genetic diversity via the mating process. We examined the pollen dispersal pattern and mating system of Shorea maxwelliana, the flowers of which are larger than those of Shorea species belonging to section Mutica which are thought to be pollinated by thrips (weak flyers). A Bayesian mating model based on the paternity of seeds collected from mother trees during sporadic and mass flowering events revealed that the estimated pollen dispersal kernel and average pollen dispersal distance were similar for both flowering events. This evidence suggests that the putative pollinators - small beetles and weevils - effectively contribute to pollen dispersal and help to maintain a high outcrossing rate even during sporadic flowering events. However, the reduction in pollen donors during a sporadic event results in a reduction in effective pollen donors, which should lead to lower genetic diversity in the next generation derived from seeds produced during such an event. Although sporadic flowering has been considered less effective for outcrossing in Shorea species that depend on thrips for their pollination, effective pollen dispersal by the small beetles and weevils ensures outcrossing during periods of low flowering tree density, as occurs in a sporadic flowering event.
    Matched MeSH terms: Pollination/genetics; Pollination/physiology
  8. Nasser AB, Zamli KZ, Alsewari AA, Ahmed BS
    PLoS One, 2018;13(5):e0195187.
    PMID: 29718918 DOI: 10.1371/journal.pone.0195187
    The application of meta-heuristic algorithms for t-way testing has recently become prevalent. Consequently, many useful meta-heuristic algorithms have been developed on the basis of the implementation of t-way strategies (where t indicates the interaction strength). Mixed results have been reported in the literature to highlight the fact that no single strategy appears to be superior compared with other configurations. The hybridization of two or more algorithms can enhance the overall search capabilities, that is, by compensating the limitation of one algorithm with the strength of others. Thus, hybrid variants of the flower pollination algorithm (FPA) are proposed in the current work. Four hybrid variants of FPA are considered by combining FPA with other algorithmic components. The experimental results demonstrate that FPA hybrids overcome the problems of slow convergence in the original FPA and offers statistically superior performance compared with existing t-way strategies in terms of test suite size.
    Matched MeSH terms: Pollination*
  9. Low SL, Wong SY, Ooi IH, Hesse M, Städler Y, Schönenberger J, et al.
    Plant Biol (Stuttg), 2016 Jan;18(1):84-97.
    PMID: 25688576 DOI: 10.1111/plb.12320
    Homoplastic evolution of 'unique' morphological characteristics in the Schismatoglottideae - many previously used to define genera - prompted this study to compare morphology and function in connection with pollination biology for Aridarum nicolsonii, Phymatarum borneense and Schottarum sarikeense. Aridarum nicolsonii and P. borneense extrude pollen through a pair of horned thecae while S. sarikeense sheds pollen through a pair of pores on the thecae. Floral traits of spathe constriction, presence and movement of sterile structures on the spadix, the comparable role of horned thecae and thecae pores, the presence of stamen-associated calcium oxalate packages, and the timing of odour emission are discussed in the context of their roles in pollinator management. Pollinators for all investigated species were determined to be species of Colocasiomyia (Diptera: Drosophilidae).
    Matched MeSH terms: Pollination/physiology*
  10. Takano KT, Repin R, Mohamed MB, Toda MJ
    Plant Biol (Stuttg), 2012 Jul;14(4):555-64.
    PMID: 22289145 DOI: 10.1111/j.1438-8677.2011.00541.x
    Two taxonomically undescribed Colocasiomyia species were discovered from inflorescences of Alocasia macrorrhizos in Kota Kinabalu City, Sabah, Borneo, Malaysia. The aims of this study were to investigate the reproductive ecology of the flies and the plant, ascertain the importance of the flies as pollinators and examine the intimate association between flowering events and life history of the flies. We conducted sampling, observations and field pollination experiments. The flies were attracted by the odour of female-phase inflorescences in the early morning on the first day of anthesis. They fed, mated and oviposited in the inflorescences for 1 day. On the second day, the flies, covered with pollen grains, left the male-phase inflorescences for the next female-phase inflorescences. The immature forms of both fly species hatched, developed and pupated within the infructescences without damaging the fruits, and developed adults emerged when the mature infructescences dehisced. The flowering events and fly behaviours were well synchronized. In field pollination experiments, inflorescences bagged with a fine mesh (insect exclusion) produced almost no fruits, whereas those bagged with a coarse mesh (bee exclusion) produced as many fruits as the open-pollinated controls. These results indicate that these flies are the most efficient and specialised pollinators for their host, A. macrorrhizos. These flies, in return, depend on A. macrorrhizos for food and habitat through most of their life cycle. This study provides a deeper insight into the less recognised, highly intimate pollination mutualism between Araceae plants and Colocasiomyia flies.
    Matched MeSH terms: Pollination*
  11. Hoe YC, Gibernau M, Wong SY
    Plant Biol (Stuttg), 2018 May;20(3):563-578.
    PMID: 29316090 DOI: 10.1111/plb.12687
    Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined. Anthesis for all species started at dawn and lasted 25-29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata. Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester-3-methyl-3-butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds. A mixed fly-beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of interpistillar staminodes in taxa from Peninsular Malaysia and especially, Ambon, Indonesia, is probably linked to a shift in these taxa to a fly-pollinated system.
    Matched MeSH terms: Pollination/physiology*
  12. Wee SL, Tan SB, Jürgens A
    Phytochemistry, 2018 Sep;153:120-128.
    PMID: 29906658 DOI: 10.1016/j.phytochem.2018.06.005
    The plants of the enigmatic genus Rafflesia are well known for their gigantic flowers and their floral features such as pungent floral scent and vivid dark color, which mimics the food/brood sites of carrion. However, information on the pollination biology of this plant group remains limited and mostly anecdotal. In the present paper, we studied the floral volatiles of R. cantleyi Solms-Laubach and their role in pollinator attraction. To achieve these aims, the floral scent was collected in situ in the field using a dynamic headspace method followed by chemical analysis via GC-MS. The olfactory preferences of pollinators to the identified chemical compounds, were tested singly and in blends, in flight tunnel bioassays and compared with responses to headspace floral extracts. In addition, flower-visiting calliphorid flies and the local carrion fly community were sampled and identified. Five species of calliphorid flies (subfamilies of Chrysomyinae and Calliphorinae), all females, were found on the flowers, whereas nine species were found in the traps that were baited with tainted meat in the surrounding habitat. However, only flower visitors of one blow fly species, Chrysomya chani Kurahashi, were observed to carry R. cantleyi pollen after visiting male flowers. The floral volatiles emitted by male flowers in full bloom were dominated by two sulphur-containing compounds, dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). These were accompanied by other minor compounds such as benzenoids (4), monoterpenoids (4), trace amounts of aliphatic compounds (1), and sesquiterpenes (1). In flight-tunnel bioassays, a female-specific positive response of C. chani flies to individual DMDS, DMTS, and a blend of DMDS and DMTS was evident. Our findings suggest that R. cantleyi biochemically mimics carrion and that relative ratio of oligosulfides in the floral scent play a key role in sex-biased pollinator specialization, attracting only female C. chani carrion flies to the flowers.
    Matched MeSH terms: Pollination*
  13. Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3277-91.
    PMID: 22006968 DOI: 10.1098/rstb.2011.0041
    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
    Matched MeSH terms: Pollination
  14. Bagchi R, Philipson CD, Slade EM, Hector A, Phillips S, Villanueva JF, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3246-55.
    PMID: 22006965 DOI: 10.1098/rstb.2011.0034
    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.
    Matched MeSH terms: Pollination
  15. Lee NSM, Clements GR, Ting ASY, Wong ZH, Yek SH
    PeerJ, 2020;8:e10033.
    PMID: 33062440 DOI: 10.7717/peerj.10033
    Background: Human population growth has led to biodiversity declines in tropical cities. While habitat loss and fragmentation have been the main drivers of urban biodiversity loss, man-made interventions to reduce health risks have also emerged as an unintentional threat. For instance, insecticide fogging to control mosquito populations has become the most common method of preventing the expansion of mosquito-borne diseases such as Dengue. However, the effectiveness of fogging in killing mosquitoes has been called into question. One concern is the unintended effect of insecticide fogging on non-target invertebrates that are crucial for the maintenance of urban ecosystems. Here, we investigate the impacts of fogging on: (1) target invertebrate taxon (Diptera, including mosquitoes); (2) non-target invertebrate taxa; and (3) the foraging behavior of an invertebrate pollinator taxon (Lepidoptera) within an urban tropical forest.

    Methods: We carried out fogging with Pyrethroid insecticide (Detral 2.5 EC) at 10 different sites in a forest situated in the state of Selangor, Peninsular Malaysia. Across the sites, we counted the numbers of knocked-down invertebrates and identified them based on morphology to different taxa. We constructed Bayesian hierarchical Poisson regression models to investigate the effects of fogging on: (1) a target invertebrate taxon (Diptera) 3-h post-fogging; (2) selected non-target invertebrate taxa 3-h post-fogging; and (3) an invertebrate pollinator taxon (Lepidoptera) 24-h post-fogging.

    Results: A total of 1,874 invertebrates from 19 invertebrate orders were knocked down by the fogging treatment across the 10 sites. Furthermore, 72.7% of the invertebrates counted 3-h post-fogging was considered dead. Our regression models showed that given the data and prior information, the probability that fogging had a negative effect on invertebrate taxa 3-h post-fogging was 100%, with reductions to 11% of the pre-fogging count of live individuals for the target invertebrate taxon (Diptera), and between 5% and 58% of the pre-fogging count of live individuals for non-target invertebrate taxa. For the invertebrate pollinator, the probability that fogging had a negative effect 24-h post-fogging was also 100%, with reductions to 53% of the pre-fogging count of live individuals.

    Discussion: Our Bayesian models unequivocally demonstrate that fogging has detrimental effects on one pollinator order and non-target invertebrate orders, especially taxa that have comparatively lower levels of chitinisation. While fogging is effective in killing the target order (Diptera), no mosquitos were found dead in our experiment. In order to maintain urban biodiversity, we recommend that health authorities and the private sector move away from persistent insecticide fogging and to explore alternative measures to control adult mosquito populations.

    Matched MeSH terms: Pollination
  16. Aziz SA, Clements GR, Peng LY, Campos-Arceiz A, McConkey KR, Forget PM, et al.
    PeerJ, 2017;5:e3176.
    PMID: 28413729 DOI: 10.7717/peerj.3176
    There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox (Pteropus hypomelanus) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox's diet appeared to be dominated by figs (Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets.
    Matched MeSH terms: Pollination
  17. Lim VC, Ramli R, Bhassu S, Wilson JJ
    PeerJ, 2018;6:e4572.
    PMID: 29607265 DOI: 10.7717/peerj.4572
    Background: Intense landscaping often alters the plant composition in urban areas. Knowing which plant species that pollinators are visiting in urban areas is necessary for understanding how landscaping impacts biodiversity and associated ecosystem services. The cave nectar bat,Eonycteris spelaea, is an important pollinator for many plants and is often recorded in human-dominated habitats. Previous studies of the diet ofE. spelaearelied on morphological identification of pollen grains found in faeces and on the body of bats and by necessity disregarded other forms of digested plant material present in the faeces (i.e., plant juice and remnants). The main objective of this study was to examine the diet of the nectarivorous bat,E. spelaea,roosting in an urban cave at Batu Caves, Peninsular Malaysia by identifying the plant material present in the faeces of bats using DNA metabarcoding.

    Methods: Faeces were collected under the roost ofE. spelaeaonce a week from December 2015 to March 2016. Plant DNA was extracted from the faeces, Polymerase chain reaction (PCR) amplified atITS2andrbcLregions and mass sequenced. The resultant plant operational taxonomic units were searched against NCBI GenBank for identification.

    Results: A total of 55 species of plants were detected from faeces ofE. spelaeaincludingArtocarpus heterophyllus, Duabanga grandifloraandMusaspp. which are likely to be important food resources for the cave nectar bat.

    Discussion: Many native plant species that had not been reported in previous dietary studies ofE. spelaeawere detected in this study includingBauhinia strychnoideaandUrophyllum leucophlaeum, suggesting thatE. spelaearemains a crucial pollinator for these plants even in highly disturbed habitats. The detection of many introduced plant species in the bat faeces indicates thatE. spelaeaare exploiting them, particularlyXanthostemon chrysanthus,as food resources in urban area. Commercial food crops were detected from all of the faecal samples, suggesting thatE. spelaeafeed predominantly on the crops particularly jackfruit and banana and play a significant role in pollination of economically important plants. Ferns and figs were also detected in the faeces ofE. spelaeasuggesting future research avenues to determine whether the 'specialised nectarivorous'E. spelaeafeed opportunistically on other parts of plants.

    Matched MeSH terms: Pollination
  18. Wong SC, Shirley NJ, Little A, Khoo KH, Schwerdt J, Fincher GB, et al.
    PMID: 25620877
    The cellulose synthase-like gene HvCslF6, which is essential for (1,3;1,4)-β-glucan biosynthesis in barley, collocates with quantitative trait loci (QTL) for grain (1,3;1,4)-β-glucan concentration in several populations, including CDC Bold × TR251. Here, an alanine-to-threonine substitution (caused by the only non-synonymous difference between the CDC Bold and TR251 HvCslF6 alleles) was mapped to a position within HvCSLF6 that seems unlikely to affect enzyme stability or function. Consistent with this, transient expression of full-length HvCslF6 cDNAs from CDC Bold and TR251 in Nicotianabenthamiana led to accumulation of similar amounts of (1,3;1,4)-β-glucan accumulation. Monitoring of HvCslF6 transcripts throughout grain development revealed a significant difference late in grain development (more than 30 days after pollination), with TR251 [the parent with higher grain (1,3;1,4)-β-glucan] exhibiting higher transcript levels than CDC Bold. A similar difference was observed between Beka and Logan, the parents of another population in which a QTL had been mapped in the HvCslF6 region. Sequencing of a putative promoter region of HvCslF6 revealed numerous polymorphisms between CDC Bold and TR251, but none between Beka and Logan. While the results of this work indicate that naturally occurring quantitative differences in (1,3;1,4)-β-glucan accumulation may be due to cis-regulated differences in HvCslF6 expression, these could not be attributed to any specific DNA sequence polymorphism. Nevertheless, information on HvCslF6 sequence polymorphism was used to develop molecular markers that could be used in barley breeding to select for the desired [low or high (1,3;1,4)-β-glucan] allele of the QTL.
    Matched MeSH terms: Pollination
  19. Jamaludin NA, Ding P, Hamid AA
    J Sci Food Agric, 2011 Jan 30;91(2):278-85.
    PMID: 21031359 DOI: 10.1002/jsfa.4182
    Determination of physico-chemical (weight, length, diameter, stomatal density, respiration rate, colour, soluble solids concentration, titratable acidity, chlorophyll and betacyanin content) and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus (Weber) Britton & Rose) was carried out from 5 to 35 days after pollination (DAP) in order to explain their growth, development, maturations and ripening stages.
    Matched MeSH terms: Pollination
  20. Huda AN, Salmah MR, Hassan AA, Hamdan A, Razak MN
    J Insect Sci, 2015;15.
    PMID: 26246439 DOI: 10.1093/jisesa/iev090
    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. 'Sala' and 'Chok Anan'. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors.
    Matched MeSH terms: Pollination*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links