Displaying publications 1 - 20 of 225 in total

Abstract:
Sort:
  1. Ibrahim Lakin I, Abbas Z, Azis RS, Ibrahim NA, Abd Rahman MA
    Materials (Basel), 2020 Oct 14;13(20).
    PMID: 33066690 DOI: 10.3390/ma13204581
    Oil palm empty fruit bunch (OPEFB) fiber/polylactic acid (PLA)-based composites filled with 6-22 wt.% multi-walled carbon nanotubes (MWCNTs) were prepared using a melt blend method. The composites were analyzed using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) of the MWCNTs. The composites were characterized for complex permittivity using the coaxial probe at 8-12 GHz range and the transmission/reflection coefficients were measured through micro strip line. The dielectric permittivity measurements carried out at X-band frequency revealed that 22 wt.% MWCNTs nanocomposite display higher dielectric constant (ε') and dielectric loss (ε″) values of 4.23 and 0.65, respectively. A maximum absorption loss of 15.2 dB was obtained for the 22 wt.% nanocomposites at 11.75 GHz. This result suggests that PLA/OPEFB/MWCNTs composites are a promising cheap and lightweight material for the effective microwave absorption in the X-band frequency range.
    Matched MeSH terms: Polyesters
  2. Mensah EE, Abbas Z, Azis RS, Ibrahim NA, Khamis AM, Abdalhadi DM
    Heliyon, 2020 Dec;6(12):e05595.
    PMID: 33305050 DOI: 10.1016/j.heliyon.2020.e05595
    The development of microwave absorbing materials based on recycled hematite (α-Fe2O3) nanoparticles and polycaprolactone (PCL) was the main focus of this study. α-Fe2O3 was recycled from mill scale and reduced to nanoparticles through high energy ball milling in order to improve its complex permittivity properties. Different compositions (5% wt., 10% wt., 15% wt. and 20% wt.) of the recycled α-Fe2O3 nanoparticles were melt-blended with PCL using a twin screw extruder to fabricate recycled α-Fe2O3/PCL nanocomposites. The samples were characterized for their microstructural properties through X - ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The complex permittivity and microwave absorption properties were respectively measured using the open ended coaxial (OEC) probe and a microstrip in connection with a vector network analyzer in the 1-4 GHz frequency range. An average α-Fe2O3 nanoparticle size of 16.2 nm was obtained with a maximum imaginary (ε") part of permittivity value of 0.54 at 4 GHz. The complex permittivity and power loss values of the nanocomposites increased with recycled α-Fe2O3 nanofiller content. At 2.4 GHz, the power loss (dB) values obtained for all the nanocomposites were between 13.3 dB and 14.4 dB and at 3.4 GHz, a maximum value of 16.37 dB was achieved for the 20 % wt. nanocomposite. The recycled α-Fe2O3/PCL nanocomposites have the potential for use in noise reduction applications in the 1-4 GHz range.
    Matched MeSH terms: Polyesters
  3. Penjumras P, Rahman RA, Talib RA, Abdan K
    ScientificWorldJournal, 2015;2015:293609.
    PMID: 26167523 DOI: 10.1155/2015/293609
    Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R (2)) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m(2), respectively.
    Matched MeSH terms: Polyesters
  4. Mohd Sabee MMS, Kamalaldin NA, Yahaya BH, Abdul Hamid ZA
    J Mater Sci Mater Med, 2020 May 04;31(5):45.
    PMID: 32367409 DOI: 10.1007/s10856-020-06380-y
    Recently, surface engineered biomaterials through surface modification are extensively investigated due to its potential to enhance cellular homing and migration which contributes to a successful drug delivery process. This study is focused on osteoblasts response towards surface engineered using a simple sodium hydroxide (NaOH) hydrolysis and growth factors conjugated poly(lactic acid) (PLA) microspheres. In this study, evaluation of the relationship of NaOH concentration with the molecular weight changes and surface morphology of PLA microspheres specifically wall thickness and porosity prior to in vitro studies was investigated. NaOH hydrolysis of 0.1 M, 0.3 M and 0.5 M were done to introduce hydrophilicity on the PLA prior to conjugation with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Morphology changes showed that higher concentration of NaOH could accelerate the hydrolysis process as the highest wall thickness was observed at 0.5 M NaOH with ~3.52 µm. All surface modified and growth factors conjugated PLA microspheres wells enhanced the migration of the cells during wound healing process as wound closure was 100% after 3 days of treatment. Increase in hydrophilicity of the surface engineered and growth factors conjugated PLA microspheres provides favorable surface for cellular attachment of osteoblast, which was reflected by positive DAPI staining of the cells' nucleus. Surface modified and growth factors conjugated PLA microspheres were also able to enhance the capability of the PLA in facilitating the differentiation process of mesenchymal stem cells (MSCs) into osteogenic lineage since only positive stain was observed on surface engineered and growth factors conjugated PLA microspheres. These results indicated that the surface engineered and growth factors conjugated PLA microspheres were non-toxic for biological environments and the improved hydrophilicity made them a potential candidate as a drug delivery vehicle as the cells can adhere, attach and proliferate inside it.
    Matched MeSH terms: Polyesters/chemistry*
  5. Bakhsheshi-Rad HR, Hamzah E, Kasiri-Asgarani M, Jabbarzare S, Iqbal N, Abdul Kadir MR
    Mater Sci Eng C Mater Biol Appl, 2016 Mar;60:526-537.
    PMID: 26706560 DOI: 10.1016/j.msec.2015.11.057
    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.
    Matched MeSH terms: Polyesters/chemistry*
  6. Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS, et al.
    Polymers (Basel), 2019 Oct 11;11(10).
    PMID: 31614623 DOI: 10.3390/polym11101656
    This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA-chitin, PLA-starch and PLA-chitin-starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young's modulus, and impact showed that the PLA-chitin-starch blend has the best mechanical properties compared to PLA-chitin and PLA-starch blends. The dynamic mechanical analysis result shows a better damping property for PLA-chitin than PLA-chitin-starch and PLA-starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA-chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA-chitin-starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA-chitin and PLA-starch samples.
    Matched MeSH terms: Polyesters
  7. Ramachandran H, Iqbal NM, Sipaut CS, Abdullah AA
    Appl Biochem Biotechnol, 2011 Jul;164(6):867-77.
    PMID: 21302147 DOI: 10.1007/s12010-011-9180-8
    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer was produced using Cupriavidus sp. USMAA2-4 via one-step cultivation process through combination of various carbon sources such as 1,4-butanediol or γ-butyrolactone with either 1-pentanol, valeric acid, or 1-propanol. Oleic acid was added to increase the biomass production. The composition of 3HV and 4HB monomers were greatly affected by the concentration of 1,4-butanediol and 1-pentanol. Terpolymers with 3HV and 4HB molar fractions ranging from 2 to 41 mol.% and 5 to 31 mol.%, respectively, were produced by varying the concentration of carbon precursors. The thermal and mechanical properties of the terpolymers containing different proportions of the constituent monomers were characterized using gel permeation chromatography (GPC), DSC, and tensile machine. GPC analysis showed that the molecular weights (M (w)) of the terpolymer produced were within the range of 346 to 1,710 kDa. The monomer compositions of 3HV and 4HB were also found to have great influences on the thermal and mechanical properties of the terpolymer P(3HB-co-3HV-co-4HB) produced.
    Matched MeSH terms: Polyesters/metabolism*; Polyesters/chemistry*
  8. Rosli NA, Ahmad I, Anuar FH, Abdullah I
    Carbohydr Polym, 2019 Jun 01;213:50-58.
    PMID: 30879689 DOI: 10.1016/j.carbpol.2019.02.074
    In this study, modified agave cellulose fibre combined by graft copolymerisation with methylmethacrylate was tested as a potential reinforcement for polylactic acid (PLA)-natural rubber/liquid natural rubber blends. Mechanical, morphological, thermal, wetting, and biodegradation characterisations were performed to assess the influence of cellulose-graft-polymethylmethacrylate (cell-g-PMMA) content on the properties of biocomposites. The addition of cell-g-PMMA improved the mechanical properties of the composites because of the chemical interaction between PLA and PMMA. Thermal stability decreased slightly upon cell-g-PMMA addition because of the low thermal stability of PMMA. A soil burial test revealed that the degradation of composites decreased with an increase in the cell-g-PMMA content. However, the weight loss after burial, which directly affected the water absorption capacity, was still higher for the cell-g-PMMA composites than for the polymer alone.
    Matched MeSH terms: Polyesters
  9. Lee CH, Padzil FNBM, Lee SH, Ainun ZMA, Abdullah LC
    Polymers (Basel), 2021 Apr 27;13(9).
    PMID: 33925266 DOI: 10.3390/polym13091407
    In this review, the potential of natural fiber and kenaf fiber (KF) reinforced PLA composite filament for fused deposition modeling (FDM) 3D-printing technology is highlighted. Additive manufacturing is a material-processing method in which the addition of materials layer by layer creates a three-dimensional object. Unfortunately, it still cannot compete with conventional manufacturing processes, and instead serves as an economically effective tool for small-batch or high-variety product production. Being preformed of composite filaments makes it easiest to print using an FDM 3D printer without or with minimum alteration to the hardware parts. On the other hand, natural fiber-reinforced polymer composite filaments have gained great attention in the market. However, uneven printing, clogging, and the inhomogeneous distribution of the fiber-matrix remain the main challenges. At the same time, kenaf fibers are one of the most popular reinforcements in polymer composites. Although they have a good record on strength reinforcement, with low cost and light weight, kenaf fiber reinforcement PLA filament is still seldom seen in previous studies. Therefore, this review serves to promote kenaf fiber in PLA composite filaments for FDM 3D printing. To promote the use of natural fiber-reinforced polymer composite in AM, eight challenges must be solved and carried out. Moreover, some concerns arise to achieve long-term sustainability and market acceptability of KF/PLA composite filaments.
    Matched MeSH terms: Polyesters
  10. Kalani M, Yunus R, Abdullah N
    Int J Nanomedicine, 2011;6:1101-5.
    PMID: 21698077 DOI: 10.2147/IJN.S18979
    The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.
    Matched MeSH terms: Polyesters/chemistry*
  11. Low L, Abu Bakar A
    Sains Malaysiana, 2013;42:443-448.
    Hollow epoxy particles (HEP) serving as reinforcing fillers were prepared using the water-based emulsion method in this study. HEP was incorporated into the polyester matrix at various loading, ranging from 0 wt% to 9 wt%, to toughen the brittle polyester thermoset. The polyester composites were prepared using the casting technique. The fracture toughness and impact strength of the polyester composites increased with increasing the HEP loading up to 5 wt%, after which
    there was a drop. The improvement in fracture toughness and impact strength is attributed to the good polymer-filler interaction. This finding was further supported by the scanning electron micrograph, in which it was shown that the polyester resin was interlocked into the pore regions of the HEP filler. The reduction in fracture toughness and impact strength of the polyester composite were believed to be attributed to the filler agglomeration. This filler-filler interaction would create stress concentration areas and eventually weakened the interfacial adhesion between the polymer matrix and the filler particles. Hence, lower fracture toughness and impact strength of the highly HEP-filled polyester composites (above 5 wt%) were detected.
    Matched MeSH terms: Polyesters
  12. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Abu Osman NA
    J Biomed Mater Res A, 2015 Jul;103(7):2482-98.
    PMID: 25407786 DOI: 10.1002/jbm.a.35371
    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials.
    Matched MeSH terms: Polyesters/administration & dosage*; Polyesters/chemistry
  13. Ibrahim Lakin I, Abbas Z, Azis RS, Abubakar Alhaji I
    Materials (Basel), 2020 Oct 16;13(20).
    PMID: 33081082 DOI: 10.3390/ma13204602
    This study was aimed at fabricating composites of polylactic acid (PLA) matrix-reinforced oil palm empty fruit bunch (OPEFB) fiber filled with chemically reduced graphene oxide (rGO). A total of 2-8 wt.% rGO/OPEFB/PLA composites were characterized for their complex permittivity using an open-ended coaxial probe (OEC) technique. The shielding efficiency properties were calculated using the measured transmission (S21) and the reflection (S11) coefficient results. All the measurements and calculations were performed in the 8-12 GHz frequency range. The morphological and microstructural study included X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the incorporation of rGO as filler into the composites enhanced their complex permittivity properties. The composites showed a total shielding efficiency (SET) of about 31.2 dB at a frequency range of 8-12 GHz, which suggests their usefulness for microwave absorption.
    Matched MeSH terms: Polyesters
  14. Nizamuddin S, Jadhav A, Qureshi SS, Baloch HA, Siddiqui MTH, Mubarak NM, et al.
    Sci Rep, 2019 Apr 01;9(1):5445.
    PMID: 30931991 DOI: 10.1038/s41598-019-41960-1
    Polymer composites are fabricated by incorporating fillers into a polymer matrix. The intent for addition of fillers is to improve the physical, mechanical, chemical and rheological properties of the composite. This study reports on a unique polymer composite using hydrochar, synthesised by microwave-assisted hydrothermal carbonization of rice husk, as filler in polylactide matrix. The polylactide/hydrochar composites were fabricated by incorporating hydrochar in polylactide at 5%, 10%, 15% and 20 wt% by melt processing in a Haake rheomix at 170 °C. Both the neat polylactide and polylactide/hydrochar composite were characterized for mechanical, structural, thermal and rheological properties. The tensile modulus of polylactide/hydrochar composites was improved from 2.63 GPa (neat polylactide) to 3.16 GPa, 3.33 GPa, 3.54 GPa, and 4.24 GPa after blending with hydrochar at 5%, 10%, 15%, and 20%, respectively. Further, the incorporation of hydrochar had little effect on storage modulus (G') and loss modulus (G″). The findings of this study reported that addition of hydrochar improves some characteristics of polylactide composites suggesting the potential of hydrochar as filler for polymer/hydrochar composites.
    Matched MeSH terms: Polyesters/chemistry*
  15. Dasan YK, Bhat AH, Ahmad F
    Carbohydr Polym, 2017 Feb 10;157:1323-1332.
    PMID: 27987839 DOI: 10.1016/j.carbpol.2016.11.012
    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend.
    Matched MeSH terms: Polyesters/chemistry*
  16. Rosli NA, Karamanlioglu M, Kargarzadeh H, Ahmad I
    Int J Biol Macromol, 2021 Sep 30;187:732-741.
    PMID: 34358596 DOI: 10.1016/j.ijbiomac.2021.07.196
    Poly(lactic acid) (PLA), a bio-based polyester, has been extensively investigated in the recent past owing to its excellent mechanical properties. Several studies have been conducted on PLA blends, with a focus on improving the brittleness of PLA to ensure its suitability for various applications. However, the increasing use of PLA has increased the contamination of PLA-based products in the environment because PLA remains intact even after three years at sea or in soil. This review focuses on analyzing studies that have worked on improving the degradation properties of PLA blends and studies how other additives affect degradation by considering different degradation media. Factors affecting the degradation properties, such as surface morphology, water uptake, and crystallinity of PLA blends, are highlighted. In natural, biotic, and abiotic media, water uptake plays a crucial role in determining biodegradation rates. Immiscible blends of PLA with other polymer matrices cause phase separation, increasing the water absorption. The susceptibility of PLA to hydrolytic and enzymatic degradation is high in the amorphous region because it can be easily penetrated by water. It is essential to study the morphology, water absorption, and structural properties of PLA blends to predict the biodegradation properties of PLA in the blends.
    Matched MeSH terms: Polyesters/chemistry*
  17. Zainab Shakir Radif, Aidy Ali
    MyJurnal
    The fracture behaviour represents the most critical issue in the automotive and aerospace engine fields. Thus, the objective of this study was to estimate and analyze the crack criteria by using the
    Mathematical laws that were limited in E 1820 standard and the results affirmed by applying the numerical solutions of ANSYS to estimate the fracture toughness value KIC, besides the energy release rate of biomass composite. The specimens were prepared from different percentage of kenaf mat (KM) and unsaturated polyester resin (UP) 20% KM – 80% UP and 40% KM – 60% UP, respectively, as well the other composite properties which were calculated using the stress-strain data. The fracture characterizations of this composite were carried out using the compact tension (CT) specimen that was commonly used to determine Mode-I fracture properties. The fracture toughness has been found to be independent of pre-crack length. Meanwhile, the tests were performed at room temperature. The numerical simulations of the ANSYS model results demonstrated a good agreement between the experiments computed results of the fracture toughness. The fracture toughness KIC of 20% KM – 80% UP and 40% KM – 60% UP was equivalent to 0.76 MPa√m and 2.0 MPa√m, respectively. Thus, the fracture propagation is dependent on the fibre percentage of the composite. On the other hand, there are unlimited mechanisms of crack paths derived from randomly kenaf mat packs, particularly in the frontal process zone of crack tip.
    Matched MeSH terms: Polyesters
  18. Muhammad KB, Abas WA, Kim KH, Pingguan-Murphy B, Zain NM, Akram H
    Clinics (Sao Paulo), 2012;67(6):629-38.
    PMID: 22760903
    OBJECTIVE: Dark poly(caprolactone) trifumarate is a successful candidate for use as a bone tissue engineering scaffold. Recently, a white polymeric scaffold was developed that shows a shorter synthesis time and is more convenient for tissue-staining work. This is an in vitro comparative study of both the white and dark scaffolds.

    METHODS: Both white and dark poly(caprolactone) trifumarate macromers were characterized via Fourier transform infrared spectroscopy before being chemically cross-linked and molded into disc-shaped scaffolds. Biodegradability was assessed by percentage weight loss on days 7, 14, 28, 42 and 56 (n = 5) after immersion in 10% serum-supplemented medium or distilled water. Static cell seeding was employed in which isolated and characterized rat bone marrow stromal cells were seeded directly onto the scaffold surface. Seeded scaffolds were subjected to a series of biochemical assays and scanning electron microscopy at specified time intervals for up to 28 days of incubation.

    RESULTS: The degradation of the white scaffold was significantly lower compared with the dark scaffold but was within the acceptable time range for bone-healing processes. The deoxyribonucleic acid and collagen contents increased up to day 28 with no significant difference between the two scaffolds, but the glycosaminoglycan content was slightly higher in the white scaffold throughout 14 days of incubation. Scanning electron microscopy at day 1 [corrected] revealed cellular growth and attachment.

    CONCLUSIONS: There was no cell growth advantage between the two forms, but the white scaffold had a slower biodegradability rate, suggesting that the newly synthesized poly(caprolactone) trifumarate is more suitable for use as a bone tissue engineering scaffold.

    Matched MeSH terms: Polyesters/chemistry*
  19. Rasheed M, Jawaid M, Parveez B, Hussain Bhat A, Alamery S
    Polymers (Basel), 2021 Feb 01;13(3).
    PMID: 33535490 DOI: 10.3390/polym13030465
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging.
    Matched MeSH terms: Polyesters
  20. Fahad Ahmad A, Aziz SHA, Abbas Z, Mohammad Abdalhadi D, Khamis AM, Aliyu US
    Polymers (Basel), 2020 Aug 26;12(9).
    PMID: 32858790 DOI: 10.3390/polym12091919
    This article describes attenuation and absorption measurements using the microstrip transmission line technique connected with a microwave vector network analyzer (Agilent 8750B). The magnitudes of the reflection (S11) and transmission (S21) coefficients obtained from the microstrip transmission line were used to determine the attenuation and absorption of oil palm empty fruit bunch/polylactic acid (OPEFB/PLA) composites in a frequency range between 0.20 GHz and 12 GHz at room temperature. The main structure of semi-flexible substrates (OPEFF/PLA) was fabricated using different fiber loading content extracted from oil palm empty fruit bunch (OPEFB) trees hosted in polylactic acid (PLA) using the Brabender blending machine, which ensured mixture homogeneity. The commercial software package, Computer Simulation Technology Microwave Studio (CSTMWS), was used to investigate the microstrip line technique performance by simulating and determine the S11 and S21 for microwave substrate materials. Results showed that the materials' transmission, reflection, attenuation, and absorption properties could be controlled by changing the percentage of OPEFB filler in the composites. The highest absorption loss was calculated for the highest percentage of filler (70%) OPEFB at 12 GHz to be 0.763 dB, while the lowest absorption loss was calculated for the lowest percentage of filler 30% OPEFB at 12 GHz to be 0.407 dB. Finally, the simulated and measured results were in excellent agreement, but the environmental conditions slightly altered the results. From the results it is observed that the value of the dielectric constant (εr') and loss factor (εr″) is higher for the OPEFB/PLA composites with a higher content of OPEFB filler. The dielectric constant increased from 2.746 dB to 3.486 dB, while the loss factor increased from 0.090 dB to 0.5941 dB at the highest percentage of 70% OPEFB filler. The dielectric properties obtained from the open-ended coaxial probe were required as input to FEM to calculate the S11 and S21 of the samples.
    Matched MeSH terms: Polyesters
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links