Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Alias Z, Tan IK
    Bioresour Technol, 2005 Jul;96(11):1229-34.
    PMID: 15734309
    In early attempts to isolate palm oil-utilising bacteria from palm oil mill effluent (POME), diluted liquid samples of POME were spread on agar containing POME as primary nutrient. 45 purified colonies were screened for intracellular lipids by staining with Sudan Black B. Of these, 10 isolates were positively stained. The latter were grown in a nitrogen-limiting medium with palm olein (a triglyceride) or saponified palm olein (salts of fatty acids) as carbon source. None of the isolates grew in the palm olein medium but all grew well in the saponified palm olein medium. Of the latter however, only one isolate was positively stained with Nile Blue A, indicating the presence of PHA. This method did not successfully generate bacterial isolates which could metabolise palm olein to produce PHA. An enrichment technique was therefore developed whereby a selective medium was designed. The latter comprised minerals and palm olein (1% w/v) as sole carbon source to which POME (2.5% v/v) was added as the source of bacteria. The culture was incubated with shaking at 30 degrees C for 4 weeks. Out of seven isolates obtained from the selective medium, two isolates, FLP1 and FLP2, could utilise palm olein for growth and production of the homopolyester, poly(3-hydroxybutyrate). FLP1 is gram-negative and is identified (BIOLOG) to have 80% similarity to Burkholderia cepacia. When grown with propionate or valerate, FLP1 produced a copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Matched MeSH terms: Polyesters/metabolism*
  2. Amirul AA, Yahya AR, Sudesh K, Azizan MN, Majid MI
    Bioresour Technol, 2008 Jul;99(11):4903-9.
    PMID: 17981028
    Cupriavidus sp. USMAA1020 was isolated from Malaysian environment and able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate), [P(3HB-co-4HB)] when grown on gamma-butyrolactone as the sole carbon source. The polyester was purified from freeze-dried cells and analyzed by nuclear magnetic resonance (NMR) spectroscopy. 1H and 13C NMR results confirmed the presence of 3HB and 4HB monomers. In a one-step cultivation process, P(3HB-co-4HB) accumulation by Cupriavidus sp. USMAA1020 was affected by carbon to nitrogen ratio (C/N). A two-step cultivation process accumulated P(3HB-co-4HB) copolyester with a higher 4HB fraction (53 mol%) in nitrogen-free mineral medium containing gamma-butyrolactone. The biosynthesis of P(3HB-co-4HB) was also achieved by using 4-hydroxybutyric acid and alkanediol as 1,4-butanediol. The composition of copolyesters varied from 32 to 51 mol% 4HB, depending on the carbon sources supplied. The copolyester produced by Cupriavidus sp. USMAA1020 has a random sequence distribution of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) units when analyzed by nuclear magnetic resonance (NMR) spectroscopy. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 25 to 60 mol% as the concentration of gamma-butyrolactone in the culture medium increased from 2.5 g/L to 20.0 g/L.
    Matched MeSH terms: Polyesters/metabolism*
  3. Ariffin N, Abdullah R, Rashdan Muad M, Lourdes J, Emran NA, Ismail MR, et al.
    Plasmid, 2011 Sep;66(3):136-43.
    PMID: 21827784 DOI: 10.1016/j.plasmid.2011.07.002
    Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is a polyhydroxyalkanoate (PHA) bioplastic group with thermoplastic properties is thus high in quality and can be degradable. PHBV can be produced by bacteria, but the process is not economically competitive with polymers produced from petrochemicals. To overcome this problem, research on transgenic plants has been carried out as one of the solutions to produce PHBV in economically sound alternative manner. Four different genes encoded with the enzymes necessary to catalyze PHBV are bktB, phaB, phaC and tdcB. All the genes came with modified CaMV 35S promoters (except for the tdcB gene, which was promoted by the native CaMV 35S promoter), nos terminator sequences and plastid sequences in order to target the genes into the plastids. Subcloning resulted in the generation of two different orientations of the tdcB, pLMIN (left) and pRMIN (right), both 17.557 and 19.967 kb in sizes. Both plasmids were transformed in immature embryos (IE) of oil palm via Agrobacterium tumefaciens. Assays of GUS were performed on one-week-old calli and 90% of the calli turned completely blue. This preliminary test showed positive results of integration. Six-months-old calli were harvested and RNA of the calli were isolated. RT-PCR was used to confirm the transient expression of PHBV transgenes in the calli. The bands were 258, 260, 315 and 200 bp in size for bktB, phaB, phaC and tdcB transgenes respectively. The data obtained showed that the bktB, phaB, phaC and tdcB genes were successfully integrated and expressed in the oil palm genome.
    Matched MeSH terms: Polyesters/metabolism*
  4. Azura Azami N, Ira Aryani W, Aik-Hong T, Amirul AA
    Protein Expr. Purif., 2019 03;155:35-42.
    PMID: 30352276 DOI: 10.1016/j.pep.2018.10.008
    Depolymerase is an enzyme that plays an important role in the hydrolysis of polyhydroxyalkanoates [PHAs]. In the current study, Burkholderia cepacia DP1 was obtained from Penang, Malaysia in which the enzyme was purified using ion exchange and gel filtration (Superdex-75) column chromatography. The molecular mass of the enzyme was estimated to be 53.3 kDa using SDS-PAGE. The enzyme activity was increased to 36.8 folds with the recovery of 16.3% after purification. The enzyme activity was detected between pH 6.0-10 and at 35-55 °C with pH 6.0 and 45 °C facilitating the maximum activity. Depolymerase was inactivated by Tween-20, Tween-80, SDS and PMSF, but insensitive to metal ions (Mg2+, Ca2+, K+, Na2+, Fe3+) and organic solvents (methanol, ethanol, and acetone). The apparent Km values of the purified P(3HB) depolymerase enzyme for P(3HB) and P(3HB-co-14%3HV) were 0.7 mg/ml and 0.8 mg/ml, respectively. The Vmax values of the purified enzyme were 10 mg/min and 8.89 mg/min for P(3HB) and P(3HB-co-14%3HV), respectively. The current study discovered a new extracellular poly(3-hydroxybutyrate) [P(3HB)] depolymerase enzyme from Burkholderia cepacia DP1 isolated and purified to homogeneity from the culture supernatant. To the best of our knowledge, this is the first report demonstrating the purification and biochemical characterization of P(3HB) depolymerase enzyme from genus Burkholderia.
    Matched MeSH terms: Polyesters/metabolism*
  5. Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesh K, et al.
    BMC Microbiol, 2014;14:318.
    PMID: 25539583 DOI: 10.1186/s12866-014-0318-z
    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host.
    Matched MeSH terms: Polyesters/metabolism
  6. Ho YH, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):337-47.
    PMID: 12396135
    The medium-chain-length polyhydroxyalkanoate (PHA(MCL)) produced by Pseudomonas putida PGA1 using saponified palm kernel oil as the carbon source could degrade readily in water taken from Kayu Ara River in Selangor, Malaysia. A weight loss of 71.3% of the PHA film occurred in 86 d. The pH of the river water medium fell from 7.5 (at d 0) to 4.7 (at d 86), and there was a net release of CO2. In sterilized river water, the PHA film also lost weight and the pH of the water fell, but to lesser extents. The C8 monomer of the PHA was completely removed after 6 d of immersion in the river water, while the proportions of the other monomers (C10, C12, and C14) were reversed from that of the undegraded PHA. By contrast, the monomer composition of the PHA immersed in sterilized river water did not change significantly from that of the undegraded PHA. Scanning electron microscopy showed physical signs of degradation on the PHA film immersed in the river water, but the film immersed in sterilized river water was relatively unblemished. The results thus indicate that the PHA(MCL) was degraded in tropical river water by biologic as well as nonbiologic means. A significant finding is that shorter-chain monomers were selectively removed throughout the entire PHA molecule, and this suggests enzymatic action.
    Matched MeSH terms: Polyesters/metabolism*
  7. Huong KH, Kannusamy S, Lim SY, Amirul AA
    J Ind Microbiol Biotechnol, 2015 Sep;42(9):1291-7.
    PMID: 26233315 DOI: 10.1007/s10295-015-1657-y
    Two-stage fermentation was normally employed to achieve a high poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] productivity with higher 4HB molar fraction. Here, we demonstrated single-stage fermentation method which is more industrial feasible by implementing mixed-substrate cultivation strategy. Studies on bioreactor scale show a remarkably high PHA accumulation of 73 wt%, contributing to a high PHA concentration and product yield of 8.6 g/L and 2.7 g/g, respectively. This fermentation strategy has resulted in copolymers with wider range of 4HB monomer composition, which ranges from 12 to 55 mol%. These copolymers show a broad range of weight average molecular weight (M w ) from 119.5 to 407.0 kDa. The copolymer characteristics were found to be predominantly affected by the nature of the substrates and the mixture strategies, regardless of the 4HB monomer compositions. This was supported by the determination of copolymer randomness using (13)C-NMR analysis. The study warrants significantly in the copolymer scale-up and modeling at industrial level.
    Matched MeSH terms: Polyesters/metabolism*
  8. Huong KH, Azuraini MJ, Aziz NA, Amirul AA
    J Biosci Bioeng, 2017 Jul;124(1):76-83.
    PMID: 28457658 DOI: 10.1016/j.jbiosc.2017.02.003
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [(P(3HB-co-4HB)] copolymer receives attention as next generation biomaterial in medical application. However, the exploitation of the copolymer is still constrained since such copolymer has not yet successfully been performed in industrial scale production. In this work, we intended to establish pilot production system of the copolymer retaining the copolymer quality which has recently discovered to have novel characteristic from lab scale fermentation. An increase of agitation speed has significantly improved the copolymer accumulation efficiency by minimizing the utilization of substrates towards cell growth components. This is evidenced by a drastic increase of PHA content from 28 wt% to 63 wt% and PHA concentration from 3.1 g/L to 6.5 g/L but accompanied by the reduction of residual biomass from 8.0 g/L to 3.8 g/L. Besides, fermentations at lower agitation and aeration have resulted in reduced molecular weight and mechanical strength of the copolymer, suggesting the role of sufficient oxygen supply efficiency in improving the properties of the resulting copolymers. The KLa-based scale-up fermentation was performed successfully in maintaining the yield and the quality of the copolymers produced without a drastic fluctuation. This suggests that the scale-up based on the KLa values supported the fermentation system of P(3HB-co-4HB) copolymer production in single-stage using mixed-substrate cultivation strategy.
    Matched MeSH terms: Polyesters/metabolism*
  9. Huong KH, Teh CH, Amirul AA
    Int J Biol Macromol, 2017 Aug;101:983-995.
    PMID: 28373050 DOI: 10.1016/j.ijbiomac.2017.03.179
    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, Mwof 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched.
    Matched MeSH terms: Polyesters/metabolism*
  10. Huu Phong T, Van Thuoc D, Sudesh K
    Int J Biol Macromol, 2016 Mar;84:361-6.
    PMID: 26708435 DOI: 10.1016/j.ijbiomac.2015.12.037
    A halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis. Only P(3HB) was produced using carbon sources such as fructose or by a combination of fructose with 1,5-pentanediol, 1,6-hexanediol, sodium hexanoate, or sodium octanoate. The biosynthesis of P(3HB-co-3HV) was achieved by adding cosubstrates such as sodium valerate and sodium heptanoate. When 1,4-butanediol, γ-butyrolactone or sodium 4-hydroxybutyrate was added to the culture medium, P(3HB-co-4HB) containing 4.0-7.1mol% 4HB fraction was accumulated. The molecular weights and thermal properties of polyesters were determined by gel permeation chromatography and differential scanning calorimeter, respectively. The results showed that Yangia sp. ND199 is able to produce polyester with high weight average molecular weight ranging from 1.3×10(6) to 2.2×10(6) Dalton and number average molecular weight ranging from 4.2×10(5) to 6.9×10(5) Dalton. The molecular weights, glass transition temperature as well as melting temperature of homopolymer P(3HB) are higher than those of copolymer P(3HB-co-3HV) or P(3HB-co-4HB).
    Matched MeSH terms: Polyesters/metabolism*
  11. Kee PE, Chiang YC, Ng HS, Lan JC
    J Biosci Bioeng, 2023 Oct;136(4):312-319.
    PMID: 37500302 DOI: 10.1016/j.jbiosc.2023.07.001
    Poly-3-hydroxybutyrate (P(3HB)), a member of the polyhydroxyalkanoate (PHA) family, is a biodegradable polyester with diverse industrial applications. NADPH-dependent acetoacetyl-CoA reductase (phaB) is the enzyme which plays an essential role in P(3HB) synthesis by catalyzing the conversion of the intermediates. The expression of phaB enzyme using the recombinant Escherichia coli BL-21(DE3) and the purification of the synthesized enzyme were studied. The pET-B3 plasmid harbouring the phaB gene derived from Ralstonia eutropha H16, was driven by the lac promoter in E. coli BL-21(DE3). The enzyme was expressed with different induction time, temperatures and cell age. Results showed that the cell age of 4 h, induction time of 12 h at 37°C were identified as the optimal conditions for the enzyme reductase expression. A specific activity of 0.151 U mg-1 protein and total protein concentration of 0.518 mg mg-1 of dry cell weight (DCW) were attained. Affinity chromatography was performed to purify the His-tagged phaB enzyme, in which enhanced the specific activity (14.44 U mg-1) and purification fold (38-fold), despite relative low yield (44.6%) of the enzyme was obtained. The purified phaB showed an optimal enzyme activity at 30°C and pH 8.0. The findings provide an alternative for the synthesis of the reductase enzyme which can be used in the industrial-scale production of the biodegradable polymers.
    Matched MeSH terms: Polyesters/metabolism
  12. Kunasundari B, Murugaiyah V, Kaur G, Maurer FH, Sudesh K
    PLoS One, 2013;8(10):e78528.
    PMID: 24205250 DOI: 10.1371/journal.pone.0078528
    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.
    Matched MeSH terms: Polyesters/metabolism
  13. Lau NS, Tsuge T, Sudesh K
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1599-609.
    PMID: 21279348 DOI: 10.1007/s00253-011-3097-6
    Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm⁻¹ in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).
    Matched MeSH terms: Polyesters/metabolism*
  14. Liew PWY, Jong BC, Sudesh K, Najimudin N, Mok PS
    World J Microbiol Biotechnol, 2023 Jan 06;39(3):68.
    PMID: 36607449 DOI: 10.1007/s11274-022-03503-1
    The production of poly(3-hydroxybutyrate) [P(3HB)] from untreated raw palm oil mill effluent (urPOME), the first wastewater discharge from crude palm oil extraction, is discussed. The mutant strain Azotobacter vinelandii ΔAvin_16040, which lacks the S-layer protein but has a better P(3HB) synthesis capability than the wild type strain ATCC 12,837, was chosen for this study. UrPOME substrate, with high biological oxygen demand (BOD), chemical oxygen demand (COD) and suspended solids, was used without pre-treatment. DSMZ-Azotobacter medium which was devoid of laboratory sugar(s) was used as the basal medium (BaM). Initially, Azotobacter vinelandii ΔAvin_16040 generated 325.5, 1496.3, and 1465.7 mg L-1 of P(3HB) from BaM with 20% urPOME, 2BaM with 20% urPOME and 20 g L-1 sucrose, and 2BaM with 20% urPOME and 2 mL L-1 glycerol, respectively. P(3HB) generation was enhanced by nearly tenfold using statistical optimization, resulting in 13.9 g L-1. Moreover, the optimization reduced the compositions of mineral salts and sugar in the medium by 48 and 97%, respectively. The urPOME-based P(3HB) product developed a yellow coloration most possibly attributed to the aromatic phenolics content in urPOME. Despite the fact that both were synthesised by ΔAvin_16040, thin films of urPOME-based P(3HB) had superior crystallinity and tensile strength than P(3HB) produced only on sucrose. When treated with 10 and 50 kGy of electron beam irradiation, these P(3HB) scissioned to half and one-tenth of their original molecular weights, respectively, and these cleavaged products could serve as useful base units for specific polymer structure construction.
    Matched MeSH terms: Polyesters/metabolism
  15. Lim SP, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2005 Jul;126(1):23-33.
    PMID: 16014996
    Bacterial polyhydroxyalkanoates (PHAs) are perceived to be a suitable alternative to petrochemical plastics because they have similar material properties, are environmentally degradable, and are produced from renewable resources. In this study, the in situ degradation of medium-chain-length PHA (PHAMCL) films in tropical forest and mangrove soils was assessed. The PHAMCL was produced by Pseudomonas putida PGA1 using saponified palm kernel oil (SPKO) as the carbon source. After 112 d of burial, there was 16.7% reduction in gross weight of the films buried in acidic forest soil (FS), 3.0% in the ones buried in alkaline forest soil by the side of a stream (FSst) and 4.5% in those buried in mangrove soil (MS). There was a slight decrease in molecular weight for the films buried in FS but not for the films buried in FSst and in MS. However, no changes were observed for the melting temperature, glass transition temperature, monomer compositions, structure, and functional group analyses of the films from any of the burial sites during the test period. This means that the integral properties of the films were maintained during that period and degradation was by surface erosion. Scanning electron microscopy of the films from the three sites revealed holes on the film surfaces which could be attributed to attack by microorganisms and bigger organisms such as detritivores. For comparison purposes, films of polyhydroxybutyrate (PHB), a short-chain-length PHA, and polyethylene (PE) were buried together with the PHAMCL films in all three sites. The PHB films disintegrated completely in MS and lost 73.5% of their initial weight in FSst, but only 4.6% in FS suggesting that water movement played a major role in breaking up the brittle PHB films. The PE films did not register any weight loss in any of the test sites.
    Matched MeSH terms: Polyesters/metabolism
  16. Ling SC, Tsuge T, Sudesh K
    J Appl Microbiol, 2011 Sep;111(3):559-71.
    PMID: 21689225 DOI: 10.1111/j.1365-2672.2011.05084.x
    Polyhydroxyalkanoate (PHA) with enhanced physicochemical properties will be ideal for a wide range of practical applications. The incorporation of 3-hydroxy-4-methylvalerate (3H4MV) into the polymer backbone is known to improve the overall properties of the resulting polymer. However, the most suitable micro-organism and PHA synthase that can synthesize this monomer efficiently still remain unknown at present. Therefore, we evaluated the abilities of a locally isolated Chromobacterium sp. USM2 to produce PHA containing 3H4MV.
    Matched MeSH terms: Polyesters/metabolism*
  17. Loo CY, Sudesh K
    Int J Biol Macromol, 2007 Apr 10;40(5):466-71.
    PMID: 17207850
    The ability of Delftia acidovorans to incorporate a broad range of 3-hydroxyvalerate (3HV) monomers into polyhydroxyalkanoate (PHA) copolymers was evaluated in this study. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] containing 0-90 mol% of 3HV was obtained when a mixture of sodium 3-hydroxybutyrate and sodium valerate was used as the carbon sources. Transmission electron microscopy analysis revealed an interesting aspect of the P(3HB-co-3HV) granules containing high molar ratios of 3HV whereby, the copolymer granules were generally larger than those of poly(3-hydroxybutyrate) [P(3HB)] granules, despite having almost the same cellular PHA contents. The large number of P(3HB-co-3HV) granules occupying almost the entire cell volume did not correspond to a higher amount of polymer by weight. This indicated that the granules of P(3HB-co-3HV) contain polymer chains that are loosely packed and therefore have lower density than P(3HB) granules. It was also interesting to note that a decrease in the length of the side chain from 3HV to 4-hydroxybutyrate (4HB) corresponded to an increase in the density of the respective PHA granules. The presence of longer side chain monomers (3HV) in the PHA structure seem to exhibit steric effects that prevent the polymer chains in the granules from being closely packed. The results reported here have important implications on the maximum ability of bacterial cells to accumulate PHA containing monomers with longer side chain length.
    Matched MeSH terms: Polyesters/metabolism*
  18. Majid MI, Akmal DH, Few LL, Agustien A, Toh MS, Samian MR, et al.
    Int J Biol Macromol, 1999 Jun-Jul;25(1-3):95-104.
    PMID: 10416655
    A locally isolated soil microorganism identified as Erwinia sp. USMI-20 has been found to produce poly(3-hydroxybutyrate), P(3HB), from either palm oil or glucose and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), from a combination of palm oil and a second carbon source of either one of the following compounds: propionic acid, n-propanol, valeric acid and n-pentanol. It was found that Erwinia sp. USMI-20 could produce P(3HB) up to 69 wt.% polymer content with a dry cell weight of 4.4 g/l from an initial amount of 14.5 g/l of glucose followed by a feeding rate of glucose at 0.48 g/h glucose. On the other hand, the bacteria can achieve 46 wt.% of P(3HB) and a dry cell weight of 3.6 g/l from a batch fermentation in a 10-l fermentor from an initial concentration of 4.6 g/l of palm oil. Further characterisation of the polymer production was also carried out by using different types of palm oil. Among the different palm oils that were used, crude palm oil was the best lipid source for P(3HB) production as compared to palm olein and palm kernel oil. In the production of the copolymer, P(3HB-co-3HV), the highest mole fraction of 3-HV units could be as high as 47 mol% from a single feeding of valeric acid upon initial growth on palm oil.
    Matched MeSH terms: Polyesters/metabolism*
  19. Martla M, Umsakul K, Sudesh K
    J Basic Microbiol, 2018 Nov;58(11):977-986.
    PMID: 30095175 DOI: 10.1002/jobm.201800279
    Polyhydroxyalkanoates (PHAs) has been paid great attention because of its useful thermoplastic properties and complete degradation in various natural environments. But, at industrial level, the successful commercialization of PHAs is limited by the high production cost due to the expensive carbon source and recovery processes. Pseudomonas mendocina PSU cultured for 72 h in mineral salts medium (MSM) containing 2% (v/v) biodiesel liquid waste (BLW) produced 79.7 wt% poly(3-hydroxybutyrate) (PHB) at 72 h. In addition, this strain produced 43.6 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 8.6 HV mol% at 60 h when added with 0.3% sodium propionate. The synthesized intracellular PHA granules were recovered and purified by the recently reported biological method using mealworms. The weight average molecular weight (Mw ) and number average molecular weight (Mn ) of the biologically extracted PHA were higher than that from the chloroform extraction with comparable melting temperature (Tm ) and high purity. This study has successfully established a low-cost process to synthesize PHAs from BLW and subsequently confirmed the ability of mealworms to extract PHAs from various kinds of bacterial cells.
    Matched MeSH terms: Polyesters/metabolism*
  20. Masani MY, Parveez GK, Izawati AM, Lan CP, Siti Nor Akmar A
    Plasmid, 2009 Nov;62(3):191-200.
    PMID: 19699761 DOI: 10.1016/j.plasmid.2009.08.002
    One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (beta-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (beta-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.
    Matched MeSH terms: Polyesters/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links