Displaying publications 1 - 20 of 314 in total

Abstract:
Sort:
  1. Mokhtar NFK, Shun YQ, Raja Nhari RMH, Mohamad NA, Shahidan NM, Warsanah IH, et al.
    PMID: 38190283 DOI: 10.1080/19440049.2023.2298476
    The inclusion of ingredients derived from pigs in highly processed consumer products poses a significant challenge for DNA-targeted analytical enforcement, which could be overcome by using digital PCR. However, most species detection methods use digital PCR to target single-copy nuclear genes, which limits their sensitivity. In this work, we examined the performance of a nanoplate-based digital PCR method that targets multi-copy nuclear (MPRE42) and mitochondrial (Cytb) genes. Poor separation of positive and negative partitions, as well as a 'rain effect' were obtained in the porcine-specific MPRE42 assay. Among the optimization strategies examined, the inclusion of restriction enzymes slightly improved the separation of positive and negative partitions, but a more extensive 'rain effect' was observed. The high copy number of the MPRE42 amplicon is hypothesized to contribute to the saturation of the positive signal. In contrast, the porcine-specific Cytb assay achieved perfect separation of positive and negative partitions with no 'rain effect'. This assay can detect as little as 0.4 pg of pork DNA, with a sensitivity of 0.05% (w/w) in a pork-chicken mixture, proving its applicability for detecting pork in meat and meat-based products. For the MPRE42 assay, potential applications in highly degraded products such as gelatin and lard are anticipated.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  2. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, Rashid MRA
    J Forensic Sci, 2023 Nov;68(6):2103-2115.
    PMID: 37646344 DOI: 10.1111/1556-4029.15370
    The onus of proof in criminal cases is beyond any reasonable doubt, and the issue on the lack of complete internal validation data can be manipulated when it comes to justifying the validity and reliability of the X-chromosomal short tandem repeats analysis for court representation. Therefore, this research evaluated the efficiency of the optimized 60% reduced volumes for polymerase chain reaction (PCR) amplification using the Qiagen Investigator® Argus X-12 QS Kit, as well as the capillary electrophoresis (CE) sample preparation for blood samples on Flinder's Technology Associates (FTA) cards. Good-quality DNA profile (3000-12,000 RFU) from the purified blood sample on FTA card (1.2 mm) were obtained using the optimized PCR (10.0 μL of PCR reaction volume and 21 cycles) and CE (9.0 μL Hi-Di™ Formamide and 0.3 μL DNA Size Standard 550 [BTO] and 27 s injection time) conditions. The analytical and stochastic thresholds were 100 and 200 RFU, respectively. Hence, the internal validation data supported the use of the optimized 60% reduced PCR amplification reaction volume of the Qiagen Investigator® Argus X-12 QS Kit as well as the CE sample preparation for producing reliable DNA profiles that comply with the quality assurance standards for forensic DNA testing laboratories, while optimizing the analytical cost.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  3. Tiew WT, Chen YC, Hsiao HL, Chen CL, Chen CJ, Chiu CH
    J Microbiol Immunol Infect, 2023 Aug;56(4):688-694.
    PMID: 36681556 DOI: 10.1016/j.jmii.2023.01.009
    BACKGROUND/PURPOSE: Precise detection of respiratory pathogens by molecular method potentially may shorten the time to diagnose and reduce unnecessary antibiotic use.

    METHODS: Medical records of hospitalized children from January 2020 to June 2021 with acute respiratory illness who received a FilmArray RP for respiratory pathogens were reviewed and compared with data from diagnosis-matched patients without receiving the test.

    RESULTS: In total, 283 patients and 150 diagnosis-matched controls were included. Single pathogen was detected in 84.3% (193/229) of the patients. The most common pathogen was human rhinovirus/enterovirus (31.6%, 84/266), followed by respiratory syncytial virus (18.8%, 50/266) and adenovirus (15%, 40/266). Although antimicrobial days of therapy (DOT) was significantly longer in FilmArray group than the control [7.1 ± 4.9 days vs 5.7 ± 2.7 days, P = 0.002], the former showed a higher intensive care unit (ICU) admission rate (3.9% vs 0%; P = 0.010). All ICU admissions were in FilmArray RP-positive group. There was no difference in antimicrobial DOT between FilmArray RP-positive and the negative groups, in all admissions, even after excluding ICU admissions. Antimicrobial DOT was shorter in the positive than negative group in patients with lower respiratory tract infections without admission to ICU [median (IQR): 6 (4-9) days vs 9 (4-12) days, P = 0.047].

    CONCLUSIONS: Shorter antimicrobial DOTs were identified in children with lower respiratory tract infection admitted to general pediatric ward and with an identifiable respiratory pathogen, indicating a role of the multiplex PCR in reducing antimicrobial use for children with respiratory tract infection.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods
  4. Teh KJ, Tang HY, Lim LS, Pung HS, Gan SY, Lai NS
    Eur Rev Med Pharmacol Sci, 2023 May;27(10):4378-4385.
    PMID: 37259718 DOI: 10.26355/eurrev_202305_32443
    Lyme borreliosis is caused by the Gram-negative spirochetes Borrelia spp., particularly Borrelia burgdorferi sensu lato complex. The disease is transmitted through the bite of the infected black-legged Ixodes tick. Lyme borreliosis extensively occurs in the Northern Hemisphere, mainly in the United States. Lyme borreliosis cases are also detected in Asian countries including Korea, Nepal, China, Taiwan, and Japan. However, there is an inadequate understanding of Lyme borreliosis in the Southeast Asian region. Hence, this review aims to provide a brief update on the prevalence of Lyme borreliosis infection in Southeast Asia based on the latest literature on this issue. Lyme borreliosis has been discovered in human serum in Indonesia, Malaysia, and Singapore. The human serum samples were mainly examined with ELISA test using Borrelia spp. IgG and IgM antigens. Borrelia spp. also has been detected in ticks found on host animals such as Sundamys muelleri and Python in Malaysia, Thailand, and Laos. Polymerase chain reaction (PCR) is used to detect the presence of Borrelia DNAs in the samples. The published studies have demonstrated that Borrelia spp. exists in Southeast Asia and although the incidence is relatively low, it is believed that Lyme disease cases are under-reported.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  5. Rashid SA, Nazakat R, Muhamad Robat R, Ismail R, Suppiah J, Rajendran K, et al.
    Front Public Health, 2023;11:1208348.
    PMID: 37965510 DOI: 10.3389/fpubh.2023.1208348
    Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may transmit through airborne route particularly when the aerosol particles remain in enclosed spaces with inadequate ventilation. There has been no standard recommended method of determining the virus in air due to limitations in pre-analytical and technical aspects. Furthermore, the presence of low virus loads in air samples could result in false negatives. Our study aims to explore the feasibility of detecting SARS-CoV-2 ribonucleic acid (RNA) in air samples using droplet digital polymerase chain reaction (ddPCR). Active and passive air sampling was conducted between December 2021 and February 2022 with the presence of COVID-19 confirmed cases in two hospitals and a quarantine center in Klang Valley, Malaysia. SARS-CoV-2 RNA in air was detected and quantified using ddPCR and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The comparability of two different digital PCR platforms (QX200 and QIAcuity) to RT-PCR were also investigated. Additionally negative staining transmission electron microscopy was performed to visualize virus ultrastructure. Detection rates of SARS-CoV-2 in air samples using ddPCR were higher compared to RT-PCR, which were 15.2% (22/145) and 3.4% (5/145), respectively. The sensitivity and specificity of ddPCR was 100 and 87%, respectively. After excluding 17 negative samples (50%) by both QX200 and QIAcuity, 15% samples (5/34) were found to be positive both ddPCR and dPCR. There were 23.5% (8/34) samples that were detected positive by ddPCR but negative by dPCR. In contrast, there were 11.7% (4/34) samples that were detected positive by dPCR but negative by ddPCR. The SARS-CoV-2 detection method by ddPCR is precise and has a high sensitivity for viral RNA detection. It could provide advances in determining low viral titter in air samples to reduce false negative reports, which could complement detection by RT-PCR.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods
  6. John DV, Aryalakshmi B, Deora H, Purushottam M, Raju R, Mahadevan A, et al.
    Trop Biomed, 2022 Dec 01;39(4):489-498.
    PMID: 36602206 DOI: 10.47665/tb.39.4.002
    Despite clinical suspicion of an infection, brain abscess samples are often culture-negative in routine microbiological testing. Direct PCR of such samples enables the identification of microbes that may be fastidious, non-viable, or unculturable. Brain abscess samples (n = 217) from neurosurgical patients were subjected to broad range 16S rRNA gene PCR and sequencing for bacteria. All these samples and seven formalin-fixed paraffin-embedded tissue (FFPE) samples were subjected to species-specific 18S rRNA PCR for neurotropic free-living amoeba that harbour pathogenic bacteria. The concordance between smear and/or culture and PCR was 69%. One-third of the samples were smear- and culture-negative for bacterial agents. However, 88% of these culture-negative samples showed the presence of bacterial 16S rRNA by PCR. Sanger sequencing of 27 selected samples showed anaerobic/fastidious gram negative bacteria (GNB, 38%), facultative Streptococci (35%), and aerobic GNB (27%). Targeted metagenomics sequencing of three samples showed multiple bacterial species, including anaerobic and non-culturable bacteria. One FFPE tissue revealed the presence of Acanthamoeba 18S rRNA. None of the frozen brain abscess samples tested was positive for 18S rRNA of Acanthamoeba or Balamuthia mandrillaris. The microbial 16/18S rRNA PCR and sequencing outperformed culture in detecting anaerobes, facultative Streptococci and FLA in brain abscess samples. Genetic analyses of 16S/18S sequences, either through Sanger or metagenomic sequencing, will be an essential diagnostic technology to be included for diagnosing culture-negative brain abscess samples. Characterizing the microbiome of culture-negative brain abscess samples by molecular methods could enable detection and/or treatment of the source of infection.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  7. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  8. Uda K, Okita K, Soneda K, Taniguchi K, Horikoshi Y
    Pediatr Int, 2021 05;63(5):597-599.
    PMID: 33278321 DOI: 10.1111/ped.14452
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  9. Wong RSY
    Malays J Pathol, 2021 Apr;43(1):3-8.
    PMID: 33903299
    The severe acute respiratory syndrome coronavirus 2 is a novel coronavirus that causes the coronavirus disease 2019 (COVID-19). COVID-19 has been declared a pandemic by the World Health Organisation since March 2020. To date, the number of confirmed COVID-19 cases has exceeded 47 million and more than 1.2 million people have lost their lives to the disease. The disease is spreading at an exponential rate with no signs of slowing down. COVID-19 testing and early diagnosis play a crucial role in not just patient management, but also the prevention of the further spread of the disease. Various diagnostic approaches have been applied to detect SARS-CoV-2 infection. This article will critically review these diagnostic approaches and compare each with the gold-standard, which is viral RNA detection using reverse transcriptase-polymerase chain reaction (RT-PCR).
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  10. Teh CSJ, Lau MY, Chong CW, Ngoi ST, Chua KH, Lee WS, et al.
    J Microbiol Methods, 2021 04;183:106184.
    PMID: 33662480 DOI: 10.1016/j.mimet.2021.106184
    Diseases caused by typhoidal and non-typhoidal Salmonella remain a considerable threat to both developed and developing countries. Based on the clinical symptoms and serological tests, it is sometimes difficult to differentiate the Salmonella enterica serovar Paratyphi A (S. enterica serovar Paratyphi A) from serovar Typhi (S. enterica serovar Typhi). In this study, we developed a quadruplex real-time polymerase chain reaction (PCR) assay with an internal amplification control (IAC), to simultaneously differentiate S. enterica serovar Paratyphi A from serovar Typhi and to detect other Salmonella serovars which cause salmonellosis in humans. This assay was evaluated on 155 salmonellae and non-salmonellae strains and demonstrated 100% specificity in species differentiation. Inclusion of an IAC did not affect the efficiency of the assay. Further evaluation using a blind test on spiked stool, blood and food specimens showed that the detection limit was at 103 -104 CFU/mL (or g) and a high PCR efficiency with different targets (R2 > 0.99), except for S. enterica serovar Paratyphi A in blood. This assay has been applied to clinical specimens to detect the causative agents of gastrointestinal infections and has successfully identified 6 salmonellosis patients from the 50 diarrhoea patients. The quadruplex real-time PCR developed in this study could enhance the detection and differentiation of salmonellae. This assay could be applied to stools, blood and food based on the notable performance in the simulation tests and field evaluation.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  11. Makhtar ST, Tan SW, Nasruddin NA, Abdul Aziz NA, Omar AR, Mustaffa-Kamal F
    BMC Vet Res, 2021 Mar 23;17(1):128.
    PMID: 33757494 DOI: 10.1186/s12917-021-02837-6
    BACKGROUND: Morbilliviruses are categorized under the family of Paramyxoviridae and have been associated with severe diseases, such as Peste des petits ruminants, canine distemper and measles with evidence of high morbidity and/or could cause major economic loss in production of livestock animals, such as goats and sheep. Feline morbillivirus (FeMV) is one of the members of Morbilliviruses that has been speculated to cause chronic kidney disease in cats even though a definite relationship is still unclear. To date, FeMV has been detected in several continents, such as Asia (Japan, China, Thailand, Malaysia), Europe (Italy, German, Turkey), Africa (South Africa), and South and North America (Brazil, Unites States). This study aims to develop a TaqMan real-time RT-PCR (qRT-PCR) assay targeting the N gene of FeMV in clinical samples to detect early phase of FeMV infection.

    RESULTS: A specific assay was developed, since no amplification was observed in viral strains from the same family of Paramyxoviridae, such as canine distemper virus (CDV), Newcastle disease virus (NDV), and measles virus (MeV), and other feline viruses, such as feline coronavirus (FCoV) and feline leukemia virus (FeLV). The lower detection limit of the assay was 1.74 × 104 copies/μL with Cq value of 34.32 ± 0.5 based on the cRNA copy number. The coefficient of variations (CV) values calculated for both intra- and inter-assay were low, ranging from 0.34-0.53% and 1.38-2.03%, respectively. In addition, the clinical sample evaluation using this assay showed a higher detection rate, with 25 (35.2%) clinical samples being FeMV-positive compared to 11 (15.5%) using conventional RT-PCR, proving a more sensitive assay compared to the conventional RT-PCR.

    CONCLUSIONS: The TaqMan-based real-time RT-PCR assay targeting the N gene described in this study is more sensitive, specific, rapid, and reproducible compared to the conventional RT-PCR assay targeting the N gene, which could be used to detect early infection in cats.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods
  12. Lee FCH, Muthu V
    Am J Trop Med Hyg, 2021 02 22;104(4):1388-1393.
    PMID: 33617472 DOI: 10.4269/ajtmh.20-0767
    Sarcocystosis outbreaks in Tioman and Pangkor islands of Malaysia between 2011 and 2014 have raised the need to improve Sarcocystis species detection from environmental samples. In-house works found that published primers amplifying the 18S rRNA gene of Sarcocystis either could not produce the target from environmental samples or produced Sarcocystis DNA sequence that was insufficient for species identification. Using the primer pair of 18S S5 F (published) and 28S R6 R (new), this study improved the PCR amplification of Sarcocystidae to overcome these two difficulties. The PCR product spanned from the 18S to 28S rRNA genes, providing more information for species identification. The long DNA sequence allowed comparison between the "Ident" and "Query Cover" sorting in GenBank identity matching. This revealed the ambiguity in identity matching caused by different lengths of reference DNA sequences, which is seldom discussed in the literature. Using the disparity index test, a measurement of homogeneity in nucleotide substitution pattern, it is shown that the internal transcribed spacer (ITS)1-5.8S-ITS2 and 28S genes are better than the 18S gene in indicating nucleotide variations, implying better potentials for species identification. The example given by the handful of Sarcocystidae long DNA sequences reported herein calls for the need to report DNA sequence from the 18S to the 28S rRNA genes for species identification, especially among emerging pathogens. DNA sequence reporting should include the hypervariable 5.8S and ITS2 regions where applicable, and not be limited to single gene, per the current general trend.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  13. Mohamad A, Hassan R, Husin A, Johan MF, Sulong S
    Asian Pac J Cancer Prev, 2021 Jan 01;22(1):85-91.
    PMID: 33507683 DOI: 10.31557/APJCP.2021.22.1.85
    OBJECTIVE: Chronic Lymphocytic Leukemia (CLL) is a common leukemia among Caucasians but rare in Asians population. We postulated that aberrant methylation either hypermethylation or partial methylation might be one of the silencing mechanisms that inactivates the tumour suppressor genes in CLL. This study aimed to compare the methylation status of tumour suppressor gene, ADAM12, among CLL patients and normal individuals. We also evaluated the association between methylation of ADAM12 and clinical and demographic characteristics of the participants.

    METHODS: A total of 25 CLL patients and 25 normal individuals were recruited in this study. The methylation status of ADAM12 was determined using Methylation-Specific PCR (MSP); whereas, DNA sequencing method was applied for validation of the MSP results.

    RESULTS: Among CLL patients, 12 (48%) were partially methylated and 13 (52%) were unmethylated. Meanwhile, 5 (20%) and 20 (80.6%) of healthy individuals were partially methylated and unmethylated, respectively. There was a statistically significant association between the status of methylation at ADAM12 and the presence of CLL (p=0.037).

    CONCLUSION: The aberrant methylation of ADAM12 found in this study using MSP assay may provide new exposure to CLL that may improve the gaps involved in genetic epigenetic study in CLL.

    Matched MeSH terms: Polymerase Chain Reaction/methods*
  14. Lau YL, Ismail IB, Mustapa NIB, Lai MY, Tuan Soh TS, Haji Hassan A, et al.
    PLoS One, 2021;16(1):e0245164.
    PMID: 33406112 DOI: 10.1371/journal.pone.0245164
    Rapid diagnosis is an important intervention in managing the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak. Real time reverse transcription polymerase chain reaction (RT-qPCR) remains the primary means for diagnosing the new virus strain but it is time consuming and costly. Recombinase polymerase amplification (RPA) is an isothermal amplification assay that does not require a PCR machine. It is an affordable, rapid, and simple assay. In this study, we developed and optimized a sensitive reverse transcription (RT)-RPA assay for the rapid detection of SARS-CoV-2 using SYBR Green I and/or lateral flow (LF) strip. The analytical sensitivity and specificity of the RT-RPA assay were tested by using 10-fold serial diluted synthetic RNA and genomic RNA of similar viruses, respectively. Clinical sensitivity and specificity of the RT-RPA assay were carried out using 78 positive and 35 negative nasopharyngeal samples. The detection limit of both RPA and RT-qPCR assays was 7.659 and 5 copies/μL RNA, respectively with no cross reactivity with other viruses. The clinical sensitivity and specificity of RT-RPA were 98% and 100%, respectively. Our study showed that RT-RPA represents a viable alternative to RT-qPCR for the detection of SARS-CoV-2, especially in areas with limited infrastructure.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  15. Teoh BT, Chin KL, Samsudin NI, Loong SK, Sam SS, Tan KK, et al.
    BMC Infect Dis, 2020 Dec 11;20(1):947.
    PMID: 33308203 DOI: 10.1186/s12879-020-05585-4
    BACKGROUND: Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required.

    METHODS: In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay.

    RESULTS: The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P 

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  16. Leow SS, Lee WK, Khoo JS, Teoh S, Hoh CC, Fairus S, et al.
    Mol Biol Rep, 2020 Dec;47(12):9409-9427.
    PMID: 33222119 DOI: 10.1007/s11033-020-06003-3
    The Nile rat (Arvicanthis niloticus) is a novel diurnal carbohydrate-sensitive rodent useful for studies on type 2 diabetes mellitus (T2DM) and the metabolic syndrome. Hepatic responses to T2DM and any interventions thereof can be evaluated via transcriptomic gene expression analysis. However, the study of gene expression via real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) requires identification of stably expressed reference genes for accurate normalisation. This study describes the evaluation and identification of stable reference genes in the livers from Control Nile rats as well as those supplemented with Water-Soluble Palm Fruit Extract, which has been previously shown to attenuate T2DM in this animal model. Seven genes identified as having stable expression in RNA-Sequencing transcriptome analysis were chosen for verification using real-time RT-qPCR. Six commonly used reference genes from previous literature and two genes from a previous microarray gene expression study in Nile rats were also evaluated. The expression data of these 15 candidate reference genes were analysed using the RefFinder software which incorporated analyses performed by various algorithms. The Hpd, Pnpla6 and Vpp2 genes were identified as the most stable across the 36 samples tested. Their applicability was demonstrated through the normalisation of the gene expression profiles of two target genes, Cela1 and Lepr. In conclusion, three novel reference genes which can be used for robust normalisation of real-time RT-qPCR data were identified, thereby facilitating future hepatic gene expression studies in the Nile rat.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  17. Ankathil R, Ismail SM, Mohd Yunus N, Sulong S, Husin A, Abdullah AD, et al.
    Malays J Pathol, 2020 Dec;42(3):307-321.
    PMID: 33361712
    Chronic myeloid leukaemia (CML) provides an illustrative disease model for both molecular pathogenesis of cancer and rational drug therapy. Imatinib mesylate (IM), a BCR-ABL1 targeted tyrosine kinase inhibitor (TKI) drug, is the first line gold standard drug for CML treatment. Conventional cytogenetic analysis (CCA) can identify the standard and variant Philadelphia (Ph) chromosome, and any additional complex chromosome abnormalities at diagnosis as well as during treatment course. Fluorescence in situ hybridization (FISH) is especially important for cells of CML patients with inadequate or inferior quality metaphases or those with variant Ph translocations. CCA in conjunction with FISH can serve as powerful tools in all phases of CML including the diagnosis, prognosis, risk stratification and monitoring of cytogenetic responses to treatment. Molecular techniques such as reverse transcriptase-polymerase chain reaction (RT-PCR) is used for the detection of BCR-ABL1 transcripts at diagnosis whereas quantitative reverse transcriptase-polymerase chain reaction (qRTPCR) is used at the time of diagnosis as well as during TKI therapy for the quantitation of BCR-ABL1 transcripts to evaluate the molecular response and minimal residual disease (MRD). Despite the excellent treatment results obtained after the introduction of TKI drugs, especially Imatinib mesylate (IM), resistance to TKIs develops in approximately 35% - 40% of CML patients on TKI therapy. Since point mutations in BCR-ABL1 are a common cause of IM resistance, mutation analysis is important in IM resistant patients. Mutations are reliably detected by nested PCR amplification of the translocated ABL1 kinase domain followed by direct sequencing of the entire amplified kinase domain. The objective of this review is to highlight the importance of regular and timely CCA, FISH analysis and molecular testing in the diagnosis, prognosis, assessment of therapeutic efficacy, evaluation of MRD and in the detection of BCR-ABL1 kinase mutations which cause therapeutic resistance in adult CML patients.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  18. Kurina I, Popenko A, Klimenko N, Koshechkin S, Chuprikova L, Filipenko M, et al.
    Mol Cell Probes, 2020 Aug;52:101570.
    PMID: 32304824 DOI: 10.1016/j.mcp.2020.101570
    Nowadays the advent of innovative high-throughput sequencing allows obtaining high-quality microbiome profiling. However, PCR-based tests are still considered the "golden standard" for many clinical applications. Here, we designed a qPCR-based platform with fluorescent-labeled oligonucleotide probes for assessing human gut microbiome composition. The system allows conducting qualitative and semiquantitative analysis for 12 prokaryotic taxa that are prevalent in the human gut and associated with diseases, diet, age and other factors. The platform was validated by comparing microbiome profile data obtained with two different methods - the platform and high-throughput 16S rRNA sequencing - across 42 stool samples. The test can form the basis for precise and cost-efficient microbiome assay for large-scale surveys including clinical trials with interventions related to diet and disease risks.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  19. Mahendran P, Liew JWK, Amir A, Ching XT, Lau YL
    Malar J, 2020 Jul 10;19(1):241.
    PMID: 32650774 DOI: 10.1186/s12936-020-03314-5
    BACKGROUND: Plasmodium knowlesi and Plasmodium vivax are the predominant Plasmodium species that cause malaria in Malaysia and play a role in asymptomatic malaria disease transmission in Malaysia. The diagnostic tools available to diagnose malaria, such as microscopy and rapid diagnostic test (RDT), are less sensitive at detecting lower parasite density. Droplet digital polymerase chain reaction (ddPCR), which has been shown to have higher sensitivity at diagnosing malaria, allows direct quantification without the need for a standard curve. The aim of this study is to develop and use a duplex ddPCR assay for the detection of P. knowlesi and P. vivax, and compare this method to nested PCR and qPCR.

    METHODS: The concordance rate, sensitivity and specificity of the duplex ddPCR assay were determined and compared to nested PCR and duplex qPCR.

    RESULTS: The duplex ddPCR assay had higher analytical sensitivity (P. vivax = 10 copies/µL and P. knowlesi = 0.01 copies/µL) compared to qPCR (P. vivax = 100 copies/µL and P. knowlesi = 10 copies/µL). Moreover, the ddPCR assay had acceptable clinical sensitivity (P. vivax = 80% and P. knowlesi = 90%) and clinical specificity (P. vivax = 87.84% and P. knowlesi = 81.08%) when compared to nested PCR. Both ddPCR and qPCR detected more double infections in the samples.

    CONCLUSIONS: Overall, the ddPCR assay demonstrated acceptable efficiency in detection of P. knowlesi and P. vivax, and was more sensitive than nested PCR in detecting mixed infections. However, the duplex ddPCR assay still needs optimization to improve the assay's clinical sensitivity and specificity.

    Matched MeSH terms: Polymerase Chain Reaction/methods*
  20. Xiu L, Binder RA, Alarja NA, Kochek K, Coleman KK, Than ST, et al.
    J Clin Virol, 2020 07;128:104391.
    PMID: 32403008 DOI: 10.1016/j.jcv.2020.104391
    BACKGROUND: During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats.

    OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily.

    STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types.

    CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links