Displaying publications 1 - 20 of 314 in total

Abstract:
Sort:
  1. Lee KS, Divis PC, Zakaria SK, Matusop A, Julin RA, Conway DJ, et al.
    PLoS Pathog, 2011 Apr;7(4):e1002015.
    PMID: 21490952 DOI: 10.1371/journal.ppat.1002015
    Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000-40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  2. Amid A, Wan Chik WD, Jamal P, Hashim YZ
    Asian Pac J Cancer Prev, 2012;13(12):6319-25.
    PMID: 23464452
    We previously found cytotoxic effects of tomato leaf extract (TLE) on the MCF-7 breast cancer cell line. The aim of this study was to ascertain the molecular mechanisms associated with the usage of TLE as an anticancer agent by microarray analysis using mRNA from MCF-7 breast cancer cells after treatment with TLE for 1 hr and 48 hrs. Approximately 991 genes out of the 30,000 genes in the human genome were significantly (p<0.05) changed after the treatment. Within this gene set, 88 were significantly changed between the TLE treated cells and the untreated MCF-7 cells (control cells) with a cut-off fold change >2.00. In order to focus on genes that were involved in cancer cell growth, only twenty-nine genes were selected, either down-regulated or up-regulated after treatment with TLE. Microarray assay results were confirmed by analyzing 10 of the most up and down regulated genes related to cancer cells progression using real-time PCR. Treatment with TLE induced significant up-regulation in the expression of the CRYAB, PIM1, BTG1, CYR61, HIF1-α and CEBP-β genes after 1 hr and 48 hrs, whereas the TXNIP and THBS1 genes were up-regulated after 1 hr of treatment but down-regulated after 48 hrs. In addition both the HMG1L1 and HIST2H3D genes were down-regulated after 1 hr and 48 hrs of treatment. These results demonstrate the potent activity of TLE as an anticancer agent.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods
  3. Subrayan V, Peyman M, Lek Yap S, Mohamed Ali NA, Devi S
    Eye Contact Lens, 2010 Jul;36(4):201-3.
    PMID: 20531205 DOI: 10.1097/ICL.0b013e3181e3efa3
    PURPOSE: The aim of this study is to evaluate the role of real-time polymerase chain reaction (PCR) and conventional bacterial culture methods in the detection of Pseudomonas aeruginosa in contact lens-induced severe, partially treated corneal ulcers referred to a tertiary center.
    METHODS: The study duration was 6 months. All patients with contact lens-related corneal ulcer, requiring admission during the study period were recruited. Samples from corneal scrapings were simultaneously sent at the time of admission for PCR and culture testing. An in-house real-time PCR was developed to detect the P. aeruginosa lasA gene. The results of PCR and culture were compared using McNemar's chi2 test.
    RESULTS: Ten patients were recruited. The mean age was 33 years (20-45 years). All the patients had contact lens-related keratitis (>4 mm) of which eight (80%) were found positive for P. aeruginosa by PCR or culture. There was no significant difference between PCR and culture in detecting P. aeruginosa (P<0.05).
    CONCLUSIONS: PCR is, at least, as good as conventional cultures in detecting P. aeruginosa. It is a rapid assay as compared with culture, and early detection enables prompt treatment thus reducing the destructive effect of the organism on the cornea.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  4. Norazah A, Rasinah WZ, Zaili Z, Aminuddin A, Ramelah M
    Malays J Pathol, 2009 Jun;31(1):29-34.
    PMID: 19694311 MyJurnal
    This study was conducted to determine whether there was any genetic heterogeneity among Helicobacter pylori strains isolated from the antrum and corpus of the same individual in a Malaysian population and to determine the presence of heterogeneous susceptibility of the isolates by comparing PCR-RAPD and antibiotic profiles. Forty-four H. pylori isolates cultured from the antrum and corpus of 22 patients were analyzed. Antibiotic susceptibility testing was carried out by minimum inhibitory concentration determination, using E-Test method strips. PCR-RAPD was carried out on all the strains and the profiles generated were analysed for cluster analysis. Twenty-nine different PCR-RAPD profiles were observed in the 44 isolates. Fifteen pairs of the isolates from the same patients had the same PCR-RAPD patterns while in 7 pairs, the profiles were different. The strains were clustered into 2 separate clusters at a low coefficient of similarity, where most of the strains were in cluster 1. The degree of similarity was very low among most of the isolates. Most of the patients (16 of 22) were infected with strains that have the same antibiotic susceptibility profiles. Out of these, only 10 pairs shared the same PCR-RAPD and antibiotic profiles. Five pairs of isolates with similar PCR-RAPD profiles differed in their antibiotic profiles due to metronidazole resistance in one of the sites. A large degree of genetic heterogeneity was observed among H. pylori strains circulating among Malaysian patients. An individual patient can be infected with multiple strains and the strains can be antibiotic resistant.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  5. Othman N, Mohamed Z, Verweij JJ, Huat LB, Olivos-García A, Yeng C, et al.
    Foodborne Pathog Dis, 2010 Jun;7(6):637-41.
    PMID: 20132028 DOI: 10.1089/fpd.2009.0427
    Entamoeba histolytica is the second major cause of liver abscess disease in humans, particularly in developing countries. Recently, DNA molecular-based methods have been employed to enhance the detection of E. histolytica in either pus or stool specimens. In this study, the results of real-time polymerase chain reaction (PCR) to detect E. histolytica DNA in pus from liver abscess cases were compared with those of indirect hemagglutination assay on the corresponding serum samples. Bacterial cultures were also performed on the pus samples for the diagnosis of pyogenic liver abscess. The real-time PCR detected E. histolytica DNA in 23 of 30 (76.7%) pus samples, when compared with 14 of 30 (46.7%) serum samples in which anti-Entamoeba antibodies were detected by indirect hemagglutination assay and 4 of 30 (13.3%) pus samples that showed bacterial infection by culture. The use of real-time PCR is a promising detection method for diagnosis and epidemiology assessment of amoebic liver abscess.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  6. Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z
    Int J Syst Evol Microbiol, 2009 Jun;59(Pt 6):1474-9.
    PMID: 19502338 DOI: 10.1099/ijs.0.001552-0
    A taxonomic study was carried out on strain A-11-3(T), which was isolated from an oil-enriched consortia from the surface seawater of Hong-Deng dock in the Straits of Malacca and Singapore. Cells were aerobic, Gram-negative, non-spore-forming irregular rods. The strain was catalase- and oxidase-negative. It grew on a restricted spectrum of organic compounds, including some organic acids and alkanes. 16S rRNA gene sequence comparisons showed that strain A-11-3(T) was most closely related to the type strains of Alcanivorax jadensis (96.8 % sequence similarity), Alcanivorax borkumensis (96.8 %), Alcanivorax dieselolei (94.8 %), Alcanivorax venustensis (94.2 %) and Alcanivorax balearicus (94.0 %). The predominant fatty acids were C(16 : 0) (31.2 %), C(18 : 1)omega7c (24.8 %), C(18 : 0) (9.6 %), C(12 : 0) (8.3 %), C(16 : 1)omega7c (8.3 %) and C(16 : 0) 3-OH (5.1 %). The G+C content of the genomic DNA was 54.7 mol%. Moreover, the strain produced lipopeptides as its surface-active compounds. According to physiological and biochemical tests, DNA-DNA hybridization results and sequence comparisons of the 16S-23S internal transcribed spacer, the gyrB gene and the alkane hydroxylase gene alkB1, strain A-11-3(T) was affiliated with the genus Alcanivorax but could be readily distinguished from recognized Alcanivorax species. Therefore strain A-11-3(T) represents a novel species of the genus Alcanivorax for which the name Alcanivorax hongdengensis sp. nov. is proposed. The type strain is A-11-3(T) (=CGMCC 1.7084(T)=LMG 24624(T)=MCCC 1A01496(T)).
    Matched MeSH terms: Polymerase Chain Reaction/methods
  7. Loh HS, Mohd-Azmi ML, Sheikh-Omar AR, Zamri-Saad M, Tam YJ
    Acta Virol., 2007;51(1):27-33.
    PMID: 17432941
    The present study described the kinetics of Rat cytomegalovirus (RCMV) infection in newborn rats by monitoring infectious virus and viral antigens in various organs, viral DNA in the blood (DNAemia) and antibody response. These parameters were evaluated quantitatively using double-antibody sandwich ELISA (DAS-ELISA), real-time PCR, indirect ELISA and virus infectivity assay. For the first time DAS-ELISA was used for detection of RCMV antigen directly from organ samples. The relationships between the presence of viral antigens in the infected organs and antibody levels were established by the Spearman's rank test. It was found that the virus was present in the blood, spleen, liver, lungs, and kidneys earlier than in the salivary glands. Furthermore, the early immunity of the newborn rats led to a delayed seroconversion. We suggested that the prolonged presence of the virus in salivary glands could augment the antibody response that conversely might be responsible for a reduction of viremia. This study expanded our understanding of RCMV pathogenesis leading to improved therapeutic and preventive treatment regimens particularly for the neonatal Human cytomegalovirus (HCMV) infections. Additionally, the detection procedures developed in this study such as DAS-ELISA and real-time PCR could serve as alternative techniques for rapid screening of large number of samples.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  8. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  9. Ainoon O, Hamidah AB, Cheong SK, Hamidah HN
    Malays J Pathol, 2000 Jun;22(1):5-11.
    PMID: 16329531
    Rearrangement of the immunoglobulin heavy chain (IgH) gene has been used as a marker of lineage and clonality in the diagnosis of B lymphoproliferative disorders. A number of PCR-based techniques have been developed to overcome the disadvantages of Southern blotting, the standard technique in detecting IgH gene rearrangement. Using an established seminested PCR technique with consensus primers to the V and J regions of the IgH gene, we analysed DNA prepared from peripheral blood and/or bone marrow specimens from 30 cases of known B cell malignancies (16 chronic lymphocytic leukemia, 11 acute lymphoblastic leukemia and 3 Non-Hodgkin Lymphoma), 3 cases of T lymphoproliferative disease and 3 cases of reactive lymphocytosis diagnosed in Hospital UKM to detect rearranged IgH gene. We found that monoclonality as represented by the presence of rearranged IgH gene were demonstrated in all the 30 cases. The PCR findings showed 100% concordance with the Southern blot analysis results which also showed rearranged IgH bands in all the 30 cases. We also found that none of the cases of T lymphoproliferative diseases and reactive lymphocytosis showed presence of rearranged IgH band, suggesting that the amplification using the IgH primers is lineage-specific. In conclusion, we find the PCR a useful method to detect IgH gene rearrangement in peripheral blood and bone marrow specimen. Since the PCR results are comparable to that of the Southern blotting in demonstrating B cell monoclonality and owing to its many advantages we feel that it can replace the Southern blot technique for the diagnosis of B cell malignancies.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  10. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12757225
    Isolation of rickettsiae from patients' blood samples and organ samples of wild rodents from areas with high seroprevalence of rickettsial infections was attempted using cell culture assay and animal passages. L929 mouse fibroblast cells grown in 24 well tissue culture plate were inoculated with buffy coat of febrile patients and examined for the growth of rickettsiae by Giemsa, Gimenez staining and direct immunofluorescence assay. No rickettsiae were isolated from 48 patients' blood samples. No symptomatic infections were noted in mice or guinea pigs infected with 50 organ samples of wild rodents. There was no rickettsial DNA amplified from these samples using various PCR detection systems for Orientia tsutsugamushi, typhus and spotted fever group rickettsiae.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  11. Kim LH, Peh SC, Poppema S
    Int J Cancer, 2003 Nov 1;107(2):250-5.
    PMID: 12949802
    Isolation of single cells permits analysis of DNA or RNA from individual cells among heterogeneous populations. This technique is particularly useful in the study of classical Hodgkin's lymphoma (cHL) due to the scarcity of H/RS tumor cells among large numbers of reactive leukocytes. In a previous study, we found a high frequency of dual LMP-1 variant (concurrent presence of deleted and nondeleted variants) in cHL from whole-tissue sections. For the present study, we applied a single-cell isolation technique to determine the LMP-1 oncogene variant in EBV-associated H/RS cells. Five cases of EBV-infected cHL, containing nondeleted (n=1), deleted (n=1) and dual infection (n=3) based on whole-tissue section analysis, were selected for study. Paraffin-embedded tissue sections were stained with antibody to LMP-1 and positively stained H/RS cells isolated using a semiautomated micromanipulator. Each isolated single cell was subjected to PCR for amplification of the LMP-1 gene flanking the 30 bp deletion region and Xho1 restriction site. Cases with either nondeleted variant or the deleted variant showed similar LMP-1 variant expression in isolated single H/RS cells. However, 1 of the 3 cases with dual variants showed only the deleted variant in H/RS cells. The other 2 cases showed mixed patterns of deleted, nondeleted and dual LMP-1 variants in isolated single H/RS cells. All cases showed loss of the Xho1 restriction site, with the exception of the case with nondeleted LMP-1. Results of single-H/RS cell analysis of the Xho1 restriction site concur with those of whole-tissue section amplification. A mixed pattern of LMP-1 variants was observed in isolated H/RS cells, and it is speculated that this is due to the accumulation of mutation and deletion events.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  12. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al.
    Virology, 2001 May 10;283(2):215-29.
    PMID: 11336547
    A search for the natural host of Nipah virus has led to the isolation of a previously unknown member of the family Paramyxoviridae. Tioman virus (TiV) was isolated from the urine of fruit bats (Pteropus hypomelanus) found on the island of the same name off the eastern coast of peninsular Malaysia. An electron microscopic study of TiV-infected cells revealed spherical and pleomorphic-enveloped viral particles (100--500 nm in size) with a single fringe of embedded peplomers. Virus morphogenesis occurred at the plasma membrane of infected cells and morphological features of negative-stained ribonucleoprotein complexes were compatible with that of viruses in the family Paramyxoviridae. Serological studies revealed no cross-reactivity with antibodies against a number of known Paramyxoviridae members except for the newly described Menangle virus (MenV), isolated in Australia in 1997. Failure of PCR amplification using MenV-specific primers suggested that this new virus is related to but different from MenV. For molecular characterization of the virus, a cDNA subtraction strategy was employed to isolate virus-specific cDNA from virus-infected cells. Complete gene sequences for the nucleocapsid protein (N) and phosphoprotein (P/V) have been determined and recombinant N and V proteins produced in baculovirus. The recombinant N and V proteins reacted with porcine anti-MenV sera in Western blot, confirming the serological cross-reactivity observed during initial virus characterization. The lack of a C protein-coding region in the P/V gene, the creation of P mRNA by insertion of 2-G residues, and the results of phylogenetic analyses all indicated that TiV is a novel member of the genus Rubulavirus.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  13. Naidu R, Wahab NA, Yadav M, Kutty MK, Nair S
    Int J Mol Med, 2001 Aug;8(2):193-8.
    PMID: 11445874
    Amplification of int-2/FGF-3 gene was investigated by differential polymerase chain reaction (dPCR) in 440 archival primary breast carcinoma tissues. Of these, 23 were comedo ductal carcinoma in situ (DCIS), 18 were non-comedo DCIS, 41 were comedo DCIS with adjacent invasive ductal carcinomas, 19 were non-comedo DCIS with adjacent invasive ductal carcinomas, 270 were invasive ductal carcinomas, 33 were invasive lobular carcinomas, 21 were colloid carcinomas and 15 were medullary carcinomas. Int-2 was amplified in 22% (96/440) of the primary breast carcinomas. It was shown that int-2 was amplified in 13% (3/23) of the comedo DCIS, 17% (7/41) of the comedo DCIS and 29% (12/41) of the adjacent invasive ductal carcinomas, 26% (71/270) of the invasive ductal carcinomas, 18% (6/33) of the invasive lobular carcinomas, 10% (2/21) of the colloid carcinomas and 13% (2/15) of the medullary carcinomas. In contrast, int-2 was not amplified in non-comedo DCIS and invasive ductal carcinomas with adjacent non-comedo DCIS lesions. A significant association was observed between int-2 amplification in the in situ components and adjacent invasive lesion (P<0.05). All tumors with int-2 amplification in the in situ lesions (7/7) also demonstrated same degree of amplification in the adjacent invasive components. However, 9% (5/53) of the tumors with no amplified int-2 gene in the in situ components showed int-2 amplification in the adjacent invasive lesions. A significant relationship was noted between amplification of int-2 and lymph node metastases (P<0.05) and poorly differentiated tumors (P<0.05) but not with estrogen receptor status (P>0.05) and proliferation index (Ki-67 and PCNA) (P>0.05). In Malaysia, majority of the patients belong to younger age group (<50 years old) but a comparison of the age groups showed that the amplification of int-2 was not statistically associated with patient age (P>0.05). These observations indicate that amplification of int-2 tends to strengthen the view that int-2 may have the potential to be an indicator of poor prognosis regardless of the age of the patient. Moreover, the presence of int-2 amplification in preinvasive, preinvasive and adjacent invasive lesions, and invasive carcinomas suggest that int-2 could be a marker of genetic instability occurring in early and late stages of tumor development.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  14. Odhah MN, Abdullah Jesse FF, Teik Chung EL, Mahmood Z, Haron AW, Mohd Lila MA, et al.
    Microb Pathog, 2019 Oct;135:103628.
    PMID: 31325572 DOI: 10.1016/j.micpath.2019.103628
    Caseous lymphadenitis is an infectious disease of almost all animals, particularly small ruminants that are caused by Corynebacterium pseudotuberculosis. The organism causes the formation of suppurative abscesses in superficial and visceral lymph nodes and in visceral organs. This current study was designed to elucidate the clinicopathological responses and PCR detection of the aetiological agent in the vital organs of goats challenged with C. pseudotuberculosis and its immunogenic mycolic acid extract. A total of twelve clinically healthy crossbred Boer female goats were divided into three groups: A, B, and C (four goats per group). Group A was inoculated intradermally with 2 ml of sterile phosphate buffered saline (PBS) pH 7 as a control group. Group B was inoculated intradermally with 2 ml of mycolic acid extract (1 g/ml), while group C was inoculated intradermally with 2 ml of 10⁹ colony-forming unit (cfu) of live C. pseudotuberculosis. The experimental animals were observed for clinical responses for 90 days post-inoculation and the clinical signs were scored according to the severity. The clinical signs observed in this study were temperature, heart rate, respiratory rate, rumen motility, enlargement of lymph nodes, and body condition score. The experimental animals were euthanised and tissue samples from different anatomical regions of the vital organs were collected in 10% buffered formalin, processed, sectioned, and stained with H&E. Results of both C. pseudotuberculosis and mycolic acid treated groups indicated a significant difference (p 
    Matched MeSH terms: Polymerase Chain Reaction/methods
  15. Liu W, Wang YT, Tian DS, Yin ZC, Kwang J
    Dis Aquat Organ, 2002 Apr 24;49(1):11-8.
    PMID: 12093036
    The vp28 gene encoding an envelope protein (28 kDa) of white spot syndrome virus (WSSV) was amplified from WSSV-infected tiger shrimp that originated from Malaysia. Recombinant VP28 protein (r-28) was expressed in Escherichia coli and used as an antigen for preparation of monoclonal antibodies (MAbs). Three murine MAbs (6F6, 6H4 and 9C10) that were screened by r-28 antigen-based enzyme-linked immunosorbent assay (ELISA) were also able to recognize viral VP28 protein as well as r-28 on Western blot. Three non-overlapping epitopes of VP28 protein were determined using the MAbs in competitive ELISA; thus, an antigen-capture ELISA (Ac-ELISA) was developed by virtue of these MAbs. Ac-ELISA can differentiate WSSV-infected shrimp from uninfected shrimp and was further confirmed by a polymerase chain reaction (PCR) and Western blot. Approximately 400 pg of purified WSSV sample and 20 pg of r-28 could be detected by Ac-ELISA, which is comparable in sensitivity to PCR assay but more sensitive than Western blot in the detection of purified virus. Hemolymph and tissue homogenate samples collected from a shrimp farm in Malaysia during December 2000 and July 2001 were also detected by Ac-ELISA and PCR with corroborating results.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  16. Osman O, Fong MY, Devi S
    Jpn J Infect Dis, 2007 Jul;60(4):205-8.
    PMID: 17642533
    The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  17. Ibrahim K, Daud SS, Seah YL, Yeoh AE, Ariffin H, Malaysia-Singapore Leukemia Study Group
    Ann Clin Lab Sci, 2008;38(4):338-43.
    PMID: 18988926
    Childhood acute lymphoblastic leukaemia (ALL) is a heterogenous disease in which oncogene fusion transcripts are known to influence the biological behaviour of the different ALL subtypes. Screening for prognostically important transcripts is an important diagnostic step in treatment stratification and prognostication of affected patients. We describe a SYBR-Green real-time multiplex PCR assay to screen for transcripts TEL-AML1, E2A-PBX1, MLL-AF4, and the two breakpoints of BCR-ABL (p190 and p210). Validation of the assay was based on conventional karyotyping results. This new assay provides a rapid, sensitive, and accurate detection method for prognostically important transcripts in childhood ALL.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  18. Ong CS, Ngeow YF, Yap SF, Tay ST
    J Med Microbiol, 2010 Nov;59(Pt 11):1311-1316.
    PMID: 20688949 DOI: 10.1099/jmm.0.021139-0
    In this study, PCR-RFLP analysis (PRA) targeting hsp65 and rpoB gene regions was evaluated for the identification of mycobacterial species isolated from Malaysian patients. Overall, the hsp65 PRA identified 92.2 % of 90 isolates compared to 85.6 % by the rpoB PRA. With 47 rapidly growing species, the hsp65 PRA identified fewer (89.4 %) species than the rpoB PRA (95.7 %), but with 23 slow-growing species the reverse was true (91.3 % identification by the hsp65 PRA but only 52.5 % by the rpoB PRA). There were 16 isolates with discordant PRA results, which were resolved by 16S rRNA and hsp65 gene sequence analysis. The findings in this study suggest that the hsp65 PRA is more useful than the rpoB PRA for the identification of Mycobacterium species, particularly with the slow-growing members of the genus. In addition, this study reports 5 and 12 novel restriction patterns for inclusion in the hsp65 and rpoB PRA algorithms, respectively.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  19. Shia AK, Gan GG, Jairaman S, Peh SC
    J Clin Pathol, 2005 Sep;58(9):962-7.
    PMID: 16126878
    Recent reports have divided diffuse large B cell lymphoma (DLBCL) into germinal centre B cell-like and activated B cell-like subgroups with implicated differences in prognosis.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  20. Ankathil R, Ismail SM, Mohd Yunus N, Sulong S, Husin A, Abdullah AD, et al.
    Malays J Pathol, 2020 Dec;42(3):307-321.
    PMID: 33361712
    Chronic myeloid leukaemia (CML) provides an illustrative disease model for both molecular pathogenesis of cancer and rational drug therapy. Imatinib mesylate (IM), a BCR-ABL1 targeted tyrosine kinase inhibitor (TKI) drug, is the first line gold standard drug for CML treatment. Conventional cytogenetic analysis (CCA) can identify the standard and variant Philadelphia (Ph) chromosome, and any additional complex chromosome abnormalities at diagnosis as well as during treatment course. Fluorescence in situ hybridization (FISH) is especially important for cells of CML patients with inadequate or inferior quality metaphases or those with variant Ph translocations. CCA in conjunction with FISH can serve as powerful tools in all phases of CML including the diagnosis, prognosis, risk stratification and monitoring of cytogenetic responses to treatment. Molecular techniques such as reverse transcriptase-polymerase chain reaction (RT-PCR) is used for the detection of BCR-ABL1 transcripts at diagnosis whereas quantitative reverse transcriptase-polymerase chain reaction (qRTPCR) is used at the time of diagnosis as well as during TKI therapy for the quantitation of BCR-ABL1 transcripts to evaluate the molecular response and minimal residual disease (MRD). Despite the excellent treatment results obtained after the introduction of TKI drugs, especially Imatinib mesylate (IM), resistance to TKIs develops in approximately 35% - 40% of CML patients on TKI therapy. Since point mutations in BCR-ABL1 are a common cause of IM resistance, mutation analysis is important in IM resistant patients. Mutations are reliably detected by nested PCR amplification of the translocated ABL1 kinase domain followed by direct sequencing of the entire amplified kinase domain. The objective of this review is to highlight the importance of regular and timely CCA, FISH analysis and molecular testing in the diagnosis, prognosis, assessment of therapeutic efficacy, evaluation of MRD and in the detection of BCR-ABL1 kinase mutations which cause therapeutic resistance in adult CML patients.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links