Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Omar MM, Wan Ibrahim WA, Elbashir AA
    Food Chem, 2014 Sep 1;158:302-9.
    PMID: 24731346 DOI: 10.1016/j.foodchem.2014.02.045
    A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.
    Matched MeSH terms: Polymethyl Methacrylate
  2. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Polymethyl Methacrylate
  3. Mohd Nazri Idris, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Sodium silicate was used to synthesize silica fine particles at room temperature using non-ionic surfactant of triethanolamine (TEA), dissolution salt and precipitating agent. The experiments were conducted by different composition of precursor material, nonionic surfactant and dissolution salt concentrations through the sol-gel process. Various particle sizes in the range 100-300nm were synthesized. The particle size of silica powders were analyzed via Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Analysis (EDAX), X-Ray Fluorescence (XRF), and Fourier Transformation Infrared (FTIR). The result has demonstrated that the particle size can be controlled by changing the ratio of non-ionic surfactant and dissolution salt or the sodium silicate concentration.
    Matched MeSH terms: Polymethyl Methacrylate
  4. Seow, L.L., Chong, S.Y., Lau, M.N., Tiong, S.G., Yew, C.C.
    Malaysian Dental Journal, 2008;29(1):34-39.
    MyJurnal
    Certain beverages e.g. coffee, tea, soft drinks, fruit juices, alcoholic beverages, may affect the physical properties of composite resins. Objectives: The objectives of this study were to: (1) evaluate the effect of different beverages and chilli sauce on the wear resistance of composite resins, (2) evaluate effect of the duration of immersion in the beverages and chilli sauce on the wear resistance of composite resins.

    Materials and methods: Disc specimens were fabricated using two different types of composite resins: (i) Filtek Z350 (3M ESPE, USA, nano-filled composite, 40 specimens) and (ii) Solare P (GC Dental Products Corp, Japan, microhybrid composite, 40 specimens). After polymerization, all the specimens were polished using Enhance Polishing System (Dentsply International Inc.,USA). The specimens were air-dried before weighing using Sartorius BP 221S weighing balance (Sartorius AG, Goettingen, Germany). Ten specimens from each type of composite were immersed in distilled water (control group), Coca cola®, orange juice (Peel Fresh®) and chilli sauce (Maggi®) respectively. The duration of immersion was 6 hours and 1 week. A reciprocal compression-sliding system was used to evaluate the wear resistance of the specimens. The specimens were moved back and forth with a loaded counter-body (235g) against sand paper (P1000, 3M ESPE, USA) in running water. The weight of the specimens were measured after 6 hours of immersion and 20,000 wear cycles and also at 1 week of immersion with further 20,000 wear cycles. The wear resistances were tabulated as percentage of weight loss from the specimens. Results were statistically analyzed using one way ANOVA and post-hoc Tukey’s test (p= 0.05).
    Results: The results showed that Solare P has significantly lower wear resistance compared to Filtek Z350. There was no significant difference in wear resistance for Filtek Z350 when immersed in chili sauce, Coca-cola® and orange juice in comparison with control group for 6 hours and 1 week. Similar findings were observed for Solare P.

    Conclusion: Within the limitations of this study, it was concluded that Solare P has poorer wear resistance than Filtek Z350. The soaking medium investigated and duration of immersion have no influence on the wear resistance of Solare P and Filtek Z350.
    Matched MeSH terms: Polymethyl Methacrylate
  5. Haseeb A, Ajit Singh V, Teh CSJ, Loke MF
    J Orthop Surg (Hong Kong), 2019 5 30;27(2):2309499019850324.
    PMID: 31138005 DOI: 10.1177/2309499019850324
    BACKGROUND: Ceftaroline is a cephalosporin that is effective against methicillin-resistant Staphylococcus aureus (MRSA) infections. The objective of this study was to determine the feasibility of using ceftaroline-loaded Polymethyl methacrylate (PMMA) as antibiotic cement against MRSA versus vancomycin-loaded PMMA in an in vitro setting.

    METHODS: PMMA pellets were prepared with three separate concentrations of each of the two antibiotics tested. They were tested to determine the effect of increasing concentration of antibiotics on the biomechanical properties of PMMA and antibiotic activity by measuring the zone of inhibition and broth elution assay.

    RESULTS: Ceftaroline PMMA at 3 wt%, three-point bending was 37.17 ± 0.51 N ( p < 0.001) and axial loading was 41.95 N ± 0.51 ( p < 0.001). At 5-wt% vancomycin-PMMA, three-point bending was 41.65 ± 0.79 N ( p = 0.02) and axial loading was 49.49 ± 2.21 N ( p = 0.01). Stiffness of ceftroline-loaded PMMA in low and medium concentration was significantly higher than the vancomycin. The zone of inhibition for ceftaroline was higher than vancomycin. Ceftaroline at 3 wt% eluted up to 6 weeks (0.3 ± 0.1 μg/ml) above the minimum inhibitory concentration (MIC) and vancomycin at 2.5 wt% eluted up to 3 weeks, same as MIC, that is, 0.5 ± 0.0 μg/ml.

    CONCLUSIONS: Ceftaroline, loaded at similar concentrations as vancomycin into PMMA, is a more potent alternative based on its more favourable bioactivity and elution properties, while having a lesser effect on the mechanical properties of the cement. The use of 3-wt% ceftaroline as antibiotic laden PMMA against MRSA is recommended. It should be noted that this was an in vitro study and to determine the clinical efficacy would need prospective, controlled and randomized studies.

    Matched MeSH terms: Polymethyl Methacrylate*
  6. Ling BC
    PMID: 11709981
    Standard prosthodontic procedures require five visits to construct a set of complete maxillary and mandibular dentures. Various attempts have been made to reduce these procedures to four or three appointments. However, most of these techniques require the use of visible light polymerized resin as the final denture base materials. Visible light-cured resin materials have inferior physical properties and biocompatibility problems as compared with heat cured polymethylmethacrylate. This paper describes a system of complete denture construction which requires three clinical appointments instead of the usual five visits. This system is made possible by using the VLC base/tray material as the preliminary impression material as well as the application of a new biometric wax occlusion rim. It retains the use of polymethylmethacrylate as the denture base material. This system also utilizes all the procedures used in the conventional five appointment system of complete denture construction.
    Matched MeSH terms: Polymethyl Methacrylate/chemistry
  7. Ling BC
    Quintessence Int, 2004 Apr;35(4):294-8.
    PMID: 15119715
    This article describes a technique of constructing a set of maxillary and mandibular complete dentures in three visits instead of the usual five clinical appointments. This system of complete-denture construction is made possible because of the combined use of visible light-cured material as an impression tray and record base material, as well as the use of new biometric wax occlusion rims. Unlike some earlier techniques that use light-cured resin composites as the denture base materials, this method retains the use of heat-cured polymethylmethacrylate as the denture base material.
    Matched MeSH terms: Polymethyl Methacrylate/chemistry
  8. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

    Matched MeSH terms: Polymethyl Methacrylate/chemistry*
  9. Singho ND, Johan MR, Lah NA
    Nanoscale Res Lett, 2014;9(1):42.
    PMID: 24450850 DOI: 10.1186/1556-276X-9-42
    Ag/PMMA nanocomposites were successfully synthesized by in-situ technique. Transmission electron microscopy (TEM) images show that the particles are spherical in shape and their sizes are dependent on temperature. The smallest particle achieved high stability as indicated from Zeta sizer analysis. The red shift of surface plasmon resonance (SPR) indicated the increases of particle sizes. X-ray diffraction (XRD) patterns exhibit a two-phase (crystalline and amorphous) structure of Ag/PMMA nanocomposites. The complexation of Ag/PMMA nanocomposites was confirmed using Raman spectroscopy. Fourier transform infrared spectroscopy spectra confirmed that the bonding was dominantly influenced by the PMMA and DMF solution. Finally, thermogravimetric analysis (TGA) results indicate that the total weight loss increases as the temperature increases.
    Matched MeSH terms: Polymethyl Methacrylate
  10. Bean LS, Heng LY, Yamin BM, Ahmad M
    Bioelectrochemistry, 2005 Feb;65(2):157-62.
    PMID: 15713567
    A single-step fabrication of a glucose biosensor with simultaneous immobilization of both ferrocene mediator and glucose oxidase in a photocurable methacrylic film consisting of poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) was reported. The entrapped ferrocene showed reversible redox behaviour in the photocured film and no significant leaching of both entrapped ferrocene and enzyme glucose oxidase was observed because of the low water absorption properties of the co-polymer films. From electrochemical studies, ferrocene entrapped in the co-polymer film demonstrated slow diffusion properties. A linear glucose response range of 2-11 mM was obtained at low applied potential of +0.25 V. The glucose biosensor fabricated by this photocuring method yielded sensor reproducibility and repeatability with relative standard deviation of <10% and long-term stability of up to 14 days. The main advantage of the use of photocurable procedure is that biosensor membrane fabrication can be performed in a single step without any lengthy chemical immobilization of enzyme.
    Matched MeSH terms: Polymethyl Methacrylate
  11. Shaker LM, Al-Amiery AA, Kadhum AAH, Takriff MS
    Nanomaterials (Basel), 2020 Oct 15;10(10).
    PMID: 33076278 DOI: 10.3390/nano10102028
    Many people suffer from myopia or hyperopia due to the refractive errors of the cornea all over the world. The use of high refractive index (RI), Abbe number (νd), and visible light transmittance (T%) polymeric contact lenses (CLs) holds great promise in vision error treatment as an alternative solution to the irreversible laser-assisted in situ keratomileusis (LASIK) surgery. Titanium dioxide nanoparticles (TiO2 NPs) have been suggested as a good candidate to rise the RI and maintain high transparency of a poly(methyl methacrylate) (PMMA)-TiO2 nanocomposite. This work includes a preparation of TiO2 NPs using the sol gel method as well as a synthesis of pure PMMA by free radical polarization and PMMA-TiO2 CLs using a cast molding method of 0.005 and 0.01 w/v concentrations and a study of their effect on the aberrated human eye. ZEMAX optical design software was used for eye modeling based on the Liou and Brennan eye model and then the pure and doped CLs were applied. Ocular performance was evaluated by modulation transfer function (MTF), spot diagram, and image simulation. The used criteria show that the best vision correction was obtained by the CL of higher doping content (p < 0.0001) and that the generated spherical and chromatic aberrations in the eye had been reduced.
    Matched MeSH terms: Polymethyl Methacrylate
  12. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS
    Malays Orthop J, 2018 Nov;12(3):6-13.
    PMID: 30555640 DOI: 10.5704/MOJ.1811.002
    Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals' vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body's compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material's compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
    Matched MeSH terms: Polymethyl Methacrylate
  13. Ali AK, Abubakar AA, Kaka U, Radzi Z, Khairuddin NH, Yusoff MSM, et al.
    Vet World, 2018 Dec;11(12):1706-1711.
    PMID: 30774262 DOI: 10.14202/vetworld.2018.1706-1711
    Aim: Tissue expansion is an applicable technique to reconstruct many surgical defects. The aim of this research was to evaluate the histological changes caused by immediate skin tissue expansion in rats as an animal model.

    Materials and Methods: Immediate skin tissue expansion in 18 adult female rats was performed using three different sizes (small, medium, and big) of polymethylmethacrylate tissue expanders at the dorsal surface of the metatarsal area of the right limb. The contralateral limb was served as the control. The tissue expanders were surgically implanted and kept for 15 days.

    Results: The immediate skin expansion resulted in histological changes such as the increased thickness of the epidermal layer, the reduction of the dermal layer, an elevated number of fibroblast as well as increased vascularity. Furthermore, skin adnexal structures such as hair follicles and sebaceous glands were farther apart.

    Conclusion: The rat skin was able to rapidly adjust and compensate against a specific range of immediate mechanical expansion. The histological changes suggest that the tissues were prepared to withstand the increased external forces, in addition to create possibly additional skin in a relatively short-term period.

    Matched MeSH terms: Polymethyl Methacrylate
  14. Mahmood Raouf R, Abdul Wahab Z, Azowa Ibrahim N, Abidin Talib Z, Chieng BW
    Polymers (Basel), 2016 Apr 14;8(4).
    PMID: 30979233 DOI: 10.3390/polym8040128
    The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV) radiation exposure to transparent poly(methylmethacrylate) (PMMA), which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB). The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend.
    Matched MeSH terms: Polymethyl Methacrylate
  15. Aiemeeza Rajali, Siti Fauzza Ahmad
    MyJurnal
    Introduction: The compatibility of denture cleanser is crucial in the prevention of failure of adhesion between silicone soft liner and acrylic denture base, thus ensuring the durability of the prosthesis. This scanning electron microscope (SEM) study was to determine the mode of failure and measured the gap formation between silicone soft liners and Polymethylmethacrylate (PMMA) denture base after immersion in denture cleansers. Methods: A total of 135 specimens of PMMA denture base lined with three different silicone soft liners (GC Reline Soft, Mollosil and Tokuyama Sofreliner Tough) were immersed into denture cleansers (Polident® and Stearadent) daily and stored in distilled water at 37±1°C. Specimens were examined and sectioned at 2.5mm and 5.0mm from the margin after 1 day, 30 days and 90 days before analyzed. Results: No significant difference detected in the mode of failure and gap formation after one-day immersion. Adhesive failure was the commonest failure at the margin after 30 days (71.11%) and after 90 days (95.56%). However, 33.33% of specimens showed mixed failure at 5.0mm sectioned after 90 days. A significant difference of gap formation was demonstrated from Mollosil in Steradent at the margin and at 2.5 mm sectioned after 30 days and after 90 days (p
    Matched MeSH terms: Polymethyl Methacrylate
  16. Swaminathan, D., Moran, John, Addy, Martin
    Ann Dent, 1996;3(1):-.
    MyJurnal
    Side effects such as abrasion of the dental hard tissue have been frequently observed following the extensive use of mechanical cleansing. As promising antiseptics like chlorhexidine produces extrinsic dental staining on long term usage, there has been increasing interest and research generated towards chemically based stain removing agents. This invitro studyexamined whether some commercial oral hygiene products could inhibit chlorhexidine derived stain independent of any mechanical cleansing action. Perspex blocks were soaked in triplicate in chlorhexidine solution for 2 minutesand stain inhibition by these products was determined by further soaking the blocks in productl water slurries for 2 minutes and finally in tea solution for I hourly periods. The optical density (OD) of each specimen was determined at each hourly interval by spectrophotometry at 395 nm and the mean values obtained. At the end of the study, most of the products inhibited stain compared to water control and there was a variation in the stain inhibitingefficacyof the products. It is thus concluded that oral hygiene products like dentifricesand mouthrinses can inhibit chlorhexidine derived extrinsic dental stain to a variable degree through a chemical action by contained ingredients.
    Matched MeSH terms: Polymethyl Methacrylate
  17. Mohd Al Amin Muhamad Nor, Maryam Mohd Ridzuan, Zainal Arifin Ahmad
    MyJurnal
    Ceramic materials play key role in several biomedical applications. One of them is bone graft which is use in treating bone defect which caused by injury or osteoporosis. Calcium phosphates based ceramic are preferred as bone grafts in hard tissue engineering because of their chemical compositions are similar to the composition of human bone, superior bioresorbable and bioactivity. In this study, β-tricalcium phosphate (β-TCP) ceramic was synthesized by using sol-gel method. Phosphorous pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as calcium and phosphate precursors. The effects of calcination temperature on the synthesis powder were studied using the XRD, SEM-EDS and FTIR techniques. It was found that calcination temperature greatly influence the purity of the synthesized powders. The β-TCP was the dominant phase with the formation of α-TCP at calcination temperature from 600 to 800°C. Pure β-TCP was obtained at calcination of 900°C. As the temperature increased to 1000°C, the β-TCP was decomposed to for calcium phosphate oxide (CPO). The sol-gel method has some advantages over other methods, mainly its simplicity and ability to produce pure β-TCP at lower calcination temperature.
    Matched MeSH terms: Polymethyl Methacrylate
  18. Affendi, A.F., Hasmaliza, M., Srimala, S.
    MyJurnal
    In these studies, cordierite was mechanically synthesized after a sol-gel process. The effect of milling time of cordierite was investigated. Aluminium nitrate nonahydrate, magnesium nitrate hexahydrate and tetraethylorthosilicate (TEOS) were used as starting materials. Gels obtained were mechanically activated in planetary ball mill by at 300rpm grinding speed and grinding time (15min, 30min, 45min and 60min). Powders produced were characterized by X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). XRD analysis proved that α-cordierite was formed at lower temperature (1200°C) as compliment to without grinding, whereby it is formed at1300°C. FESEM analysis shows the size of the cordierite were in submicron scale. EDX analysis proved that magnesium, aluminium, silicon and oxygen are elements existed in cordierite.
    Matched MeSH terms: Polymethyl Methacrylate
  19. Chua, Y.C.J., Lim, L.A., Hudzairy, A.
    Malays Orthop J, 2009;3(1):91-94.
    MyJurnal
    We are reporting a case of post-traumatic chronic osteomyelitis of the tibia with an open wound exposing an intra medullar nail implant for 13 years. The patient presented with fresh ipsilateral tibia plateau fracture. He was treated by removal of the implant, debridement and local placement of Gentamicin-impregnated PMMA beads according to guidelines of two-stage Belfast technique . After five months of wound treatment, the exposed bone was covered by healthy granulation tissue and the patient was able to fully bear weight.
    Matched MeSH terms: Polymethyl Methacrylate
  20. Shah Rizal Kasim, Yeong, Meng Yee, Hazizan Md. Akil, Zainal Arifin Ahmad, Hazman Seli
    MyJurnal
    Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
    Matched MeSH terms: Polymethyl Methacrylate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links