Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Billa N, Yuen KH
    AAPS PharmSciTech, 2000;1(4):E30.
    PMID: 14727895
    The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60 degrees C, 70 degrees C, and 80 degrees C to study the effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales; however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.
    Matched MeSH terms: Polysaccharides, Bacterial/metabolism*; Polysaccharides, Bacterial/chemistry
  2. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
    Matched MeSH terms: Polysaccharides, Bacterial/chemistry
  3. Mohd Sauid S, Krishnan J, Huey Ling T, Veluri MV
    Biomed Res Int, 2013;2013:409675.
    PMID: 24350269 DOI: 10.1155/2013/409675
    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
    Matched MeSH terms: Polysaccharides, Bacterial/metabolism*
  4. Bera H, Mothe S, Maiti S, Vanga S
    Int J Biol Macromol, 2018 Feb;107(Pt A):604-614.
    PMID: 28916379 DOI: 10.1016/j.ijbiomac.2017.09.027
    Novel carboxymethyl fenugreek galactomannan (CFG)-gellan gum (GG)-calcium silicate (CS) composite beads were developed for controlled glimepiride (GLI) delivery. CFG having degree of carboxymethylation of 0.71 was synthesized and characterized by FTIR, DSC and XRD analyses. Subsequently, GLI-loaded hybrids were accomplished by ionotropic gelation technique employing Ca+2/Zn+2/Al+3 ions as cross-linkers. All the formulations demonstrated excellent drug encapsulation efficiency (DEE, 48-97%) and sustained drug release behaviour (Q8h, 62-94%). These quality attributes were remarkably influenced by polymer-blend (GG:CFG) ratios, cross-linker types and CS inclusion. The drug release profile of the optimized formulation (F-6) was best fitted in zero-order model with anomalous diffusion driven mechanism. It also conferred excellent ex vivo mucoadhesive property and considerable hypoglycemic effect in streptozotocin-induced diabetic rats. Furthermore, the beads were characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the developed hybrid matrices are appropriate for controlled delivery of GLI for Type 2 diabetes management.
    Matched MeSH terms: Polysaccharides, Bacterial/chemistry
  5. Lim BK, Thong KL
    J Infect Dev Ctries, 2009 Jul 01;3(6):420-8.
    PMID: 19762954
    BACKGROUND: Differentiation of Salmonella enterica into its serogroups is important for epidemiological study. The objective of the study was to apply a multiplex PCR targeting serogroups A, B, C1, D, E and Vi-positive strains of Salmonella enterica commonly found in Malaysia. A separate H-typing multiplex PCR which identified flagellar antigen "a", "b" or "d" was also optimized to confirm clinical serotypes, S. Paratyphi A and S. Typhi.

    METHODOLOGY: Sixty-seven laboratory Salmonella enterica strains were tested. Six sets of primers targeting defined regions of the O antigen synthesis genes (rfb gene cluster) and Vi antigen gene (viaB) were selected and combined into a multiplex PCR for O-grouping. Four primers (H-for, Ha-rev, Hb-rev and Hd-rev) were used in the second step multiplex PCR for H-typing. The optimized mPCR assays were further evaluated with 58 blind-coded Salmonella strains.

    RESULTS: The multiplex PCR results obtained showed 100% concordance to the conventionally typed serogroups. Validation with 58 blind coded Salmonella strains yield 100% accuracy and specificity.

    CONCLUSION: Based on this study, PCR serogrouping proved to be a rapid, alternative method for further differentiation of Salmonella enterica.

    Matched MeSH terms: Polysaccharides, Bacterial/genetics
  6. Tang SS, Tan WS, Devi S, Wang LF, Pang T, Thong KL
    Clin Diagn Lab Immunol, 2003 Nov;10(6):1078-84.
    PMID: 14607870
    The capsular polysaccharide Vi antigen (ViCPS) is an essential virulence factor and also a protective antigen of Salmonella enterica serovar Typhi. A random 12-mer phage-displayed peptide library was used to identify mimotopes (epitope analogues) of this antigen by panning against a ViCPS-specific monoclonal antibody (MAb) ATVi. Approximately 75% of the phage clones selected in the fourth round carried the peptide sequence TSHHDSHGLHRV, and the rest of the clones harbored ENHSPVNIAHKL and other related sequences. These two sequences were also obtained in a similar panning process by using pooled sera from patients with a confirmed diagnosis of typhoid fever, suggesting they mimic immunodominant epitopes of ViCPS antigens. Binding of MAb ATVi to the mimotopes was specifically blocked by ViCPS, indicating that they interact with the same binding site (paratope) of the MAb. Data and reagents generated in this study have important implications for the development of peptide-base diagnostic tests and peptide vaccines and may also provide a better understanding of the pathogenesis of typhoid fever.
    Matched MeSH terms: Polysaccharides, Bacterial/immunology*
  7. Khor YP, Koh SP, Long K, Long S, Ahmad SZ, Tan CP
    Molecules, 2014 Jul 01;19(7):9187-202.
    PMID: 24988188 DOI: 10.3390/molecules19079187
    Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.
    Matched MeSH terms: Polysaccharides, Bacterial/chemistry
  8. Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MY, Syed MA
    World J Microbiol Biotechnol, 2012 Jan;28(1):347-52.
    PMID: 22806810 DOI: 10.1007/s11274-011-0826-z
    A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm(2)) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l(-1), both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l(-1) phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l(-1). However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.
    Matched MeSH terms: Polysaccharides, Bacterial
  9. Amir, I.Z., Sharon, W.X.R., Syafiq, A.
    MyJurnal
    Impacts and relationships on physicochemical properties in dark chocolate produced from different substitution for cocoa butter by Xanthan gum (XG) and Guar gum (GG) blends were determined using D-optimal mixture design. This study involved three levels of substitution which are 5%, 10% and 15% with constrained cocoa butter content and random blend of gums. Linear design models were applied to analyze parameters including texture (hardness) measurement and melting profile of fat crystal. Products experienced undesirable raises of hardness jointly with the increment of gums incorporation across the level of cocoa butter replacement from 5% to 15%. Similar trend was also agreed with the melting behavior of products as their melting point increased with the gradual diminution of cocoa butter. After all, the replacement of cocoa butter using hydrocolloids was deemed possible as there were products whose melting point and hardness fell in the acceptable range.
    Matched MeSH terms: Polysaccharides, Bacterial
  10. Yusuf I, Ahmad SA, Phang LY, Yasid NA, Shukor MY
    3 Biotech, 2019 Jan;9(1):32.
    PMID: 30622870 DOI: 10.1007/s13205-018-1555-x
    The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.
    Matched MeSH terms: Polysaccharides, Bacterial
  11. Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438288 DOI: 10.3390/molecules23020398
    Tempoyak is a functional Malaysian food (an acid-fermented condiment) which is produced from the pulp of the durian (Durio zibethinus) fruit. The current study aimed to isolate and identify potential exopolysaccharide (EPS)-producing Lactobacillus strains from tempoyak for potential use as probiotics. Seven isolates (DUR2, DUR4, DUR5, DUR8, DUR12, DUR18, and DUR20) out of 44 were able to produce EPS, and exhibited resistance to acid and bile salt compared to the reference strains Lactobacillus rhmnosus (ATCC53103) and L. plantarum (ATCC8014). The seven isolated strains belonged to five different species-L. plantarum, L. fermentum, L. crispatus, L. reuteri, and L. pentosus-which were identified using API 50 CHL and 16S rRNA gene sequences (Polymerase chain reaction, PCR - based). The seven strains displayed different ability to produce EPS (100-850 mg/L). Isolates exhibited a high survivability to acid (pH 3.0), bile salts (0.3%), and gastrointestinal tract model (<70%). Results showed that the auto-aggregation and cell surface hydrophobicity ranged from 39.98% to 60.09% and 50.80% to 80.53%, respectively, whereas, the highest co-aggregation value (66.44%) was observed by L. fermentum (DUR8) with Pseudomonas aeruginosa. The isolates showed good inhibitory activity against tested pathogens, high antioxidant activity (32.29% to 73.36%), and good ability to reduce cholesterol (22.55% to 75.15%). Thus, the seven tested strains have value as probiotics.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*; Polysaccharides, Bacterial/pharmacology; Polysaccharides, Bacterial/chemistry
  12. Syafiq, A., Amir, I.Z., Sharon, W.X.R.
    MyJurnal
    The impacts on both rheological parameters; Casson yield stress and Casson viscosity were determined. The interactions among blend’s components; xanthan gum (XG), corn starch (CS), glycerin (GL) and their relationship with both flow parameters were also investigated by using D-Optimal mixture design. Three levels of cocoa butter substitution assigned in chocolate production were at 5%, 10% and 15% level with random proportions of each component generated by Design Expert software. An appropriate mathematical model was applied to evaluate each response as a function of the proportions of the components enabling in prediction of future response by using any blend of components. As the incorporation of the blends (XG/CS/GL) in chocolate production was elevated from 5% to 15%, both parameters; viscosity and yield stress of chocolate were gradually increased, as in range 7.819 to 10.529 Pa, and 2.372 to 3.727 Pa.s, respectively. Neither binary nor ternary component-component interaction exhibited synergistic effect. Nevertheless, strongest antagonistic effect on both rheological parameters of substituted chocolate at 5% level and 10% level were respectively observed at ternary interaction region for the former, and at binary interaction area of CS:GL, closer to CS corner as for the latter. This study somehow provides ideas on how component-component interactions influence experimented response.
    Matched MeSH terms: Polysaccharides, Bacterial
  13. Goh KGK, Phan MD, Forde BM, Chong TM, Yin WF, Chan KG, et al.
    mBio, 2017 10 24;8(5).
    PMID: 29066548 DOI: 10.1128/mBio.01558-17
    Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*
  14. Halim, N.R.A., Shukri, W.H.Z., Lani, M.N., Sarbon, N.M.
    MyJurnal
    The aim of this work is to study the effect of hydrocolloids; guar gum (GG), xanthan gum (XG) and carboxymethyl cellulose (CMC) on the physicochemical properties, microbiological quality and sensory properties in order to investigate the potential of applying fermented cassava (tapai ubi) in ice cream. Fermented cassava ice cream (FCI) incorporated with the three types of hydrocolloid was prepared and the protein content, pH value, overrun, colour, hardness, microstructure, FTIR spectrum and sensory acceptance of all samples were determined. Fermented cassava ice cream incorporated with XG showed the highest protein content (14.88%), pH value (pH 6.07), and overrun value (4.27%) as compared to the fermented cassava ice cream incorporated with GG and CMC. Meanwhile, ice cream incorporated with GG possessed the highest L* (94.43) and hardness (3693.15 g) value as compared to XG and CMC. The microstructure study showed that the difference in uniformity at the interface obtained with different types of the hydrocolloids added demonstrated the effect of fat absorption at the air interfaces. The FTIR spectrum investigated indicated that the addition of the fermented cassava to FCI had increased the OH group in the ice cream as compared to the control. All samples were microbial safe as the total plate counts in all samples were below the standard as prescribed in Food Act 1983 with no presence of E. coli . In conclusion, fermented cassava ice cream with XG showed the good quality in terms of its pH value, overrun, total plate count and overall acceptability.
    Matched MeSH terms: Polysaccharides, Bacterial
  15. Shukri, W.H.Z., Hamzah, E.N.H., Halim, N.R.A., Isa, M.I.N., Sarbon, N.M.
    MyJurnal
    The aim of this work is to study the effect of hydrocolloids (guar gum, xanthan gum and carboxymethyl cellulose (CMC) on the physical properties and sensory evaluation of ice cream produced in order to investigate the potential of applying fermented glutinous rice (tapai pulut) as a value-added ingredient. The addition of 25% fermented glutinous rice was the most reliable amount to enhance the physical and sensory properties of ice cream when incorporating hydrocolloids. The addition of hydrocolloids significantly (p < 0.05) increased the pH, firmness, overrun, and melting rate of fermented glutinous rice ice cream. The addition of guar gum scored the highest firmness value (5403 g) followed by CMC (4630 g) and xanthan gum (3481g). Fermented glutinous rice ice cream with xanthan gum added, induced a noticeable change in overrun value (62%) while the addition of CMC decreased the melting rate compared to the control. The FTIR spectrum of fermented glutinous rice ice cream with different hydrocolloids containing carboxyl, amide and carbonyl group was appeared at 3362-3379 cm-1 , 1639-1640 cm-1 and 1026-1064 cm-1, respectively. In conclusion, the addition of xanthan gum presented great potential to improve the quality of fermented glutinous rice ice cream produced in terms of its firmness, overrun and melting rate.
    Matched MeSH terms: Polysaccharides, Bacterial
  16. Wang J, Goh KM, Salem DR, Sani RK
    Sci Rep, 2019 02 07;9(1):1608.
    PMID: 30733471 DOI: 10.1038/s41598-018-36983-z
    Geobacillus sp. WSUCF1 is a Gram-positive, spore-forming, aerobic and thermophilic bacterium, isolated from a soil sample obtained from a compost facility. Strain WSUCF1 demonstrated EPS producing capability using different sugars as the carbon source. The whole-genome analysis of WSUCF1 was performed to disclose the essential genes correlated with nucleotide sugar precursor biosynthesis, assembly of monosaccharide units, export of the polysaccharide chain, and regulation of EPS production. Both the biosynthesis pathway and export mechanism of EPS were proposed based on functional annotation. Additionally, the genome description of strain WSUCF1 suggests sophisticated systems for its adaptation under thermophilic conditions. The presence of genes associated with CRISPR-Cas system, quorum quenching lactonase, polyketide synthesis and arsenic resistance makes this strain a potential candidate for various applications in biotechnology and biomedicine. The present study indicates that strain WSUCF1 has promise as a thermophilic EPS producer for a broad range of industrial applications. To the best of our knowledge, this is the first report on genome analysis of a thermophilic Geobacillus species focusing on its EPS biosynthesis and transportation, which will likely pave the way for both enhanced yield and tailor-made EPS production by thermophilic bacteria.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*
  17. Salma H, Melha YM, Sonia L, Hamza H, Salim N
    J Pharm Sci, 2021 06;110(6):2531-2543.
    PMID: 33548245 DOI: 10.1016/j.xphs.2021.01.032
    The purpose of this study was to simultaneously predict the drug release and skin permeation of Piroxicam (PX) topical films based on Chitosan (CTS), Xanthan gum (XG) and its Carboxymethyl derivatives (CMXs) as matrix systems. These films were prepared by the solvent casting method, using Tween 80 (T80) as a permeation enhancer. All of the prepared films were assessed for their physicochemical parameters, their in vitro drug release and ex vivo skin permeation studies. Moreover, deep learning models and machine learning models were applied to predict the drug release and permeation rates. The results indicated that all of the films exhibited good consistency and physicochemical properties. Furthermore, it was noticed that when T80 was used in the optimal formulation (F8) based on CTS-CMX3, a satisfactory drug release pattern was found where 99.97% of PX was released and an amount of 1.18 mg/cm2 was permeated after 48 h. Moreover, Generative Adversarial Network (GAN) efficiently enhanced the performance of deep learning models and DNN was chosen as the best predictive approach with MSE values equal to 0.00098 and 0.00182 for the drug release and permeation kinetics, respectively. DNN precisely predicted PX dissolution profiles with f2 values equal to 99.99 for all the formulations.
    Matched MeSH terms: Polysaccharides, Bacterial
  18. Fareez IM, Lim SM, Mishra RK, Ramasamy K
    Int J Biol Macromol, 2015 Jan;72:1419-28.
    PMID: 25450046 DOI: 10.1016/j.ijbiomac.2014.10.054
    The vulnerability of probiotics at low pH and high temperature has limited their optimal use as nutraceuticals. This study addressed these issues by adopting a physicochemical driven approach of incorporating Lactobacillus plantarum LAB12 into chitosan (Ch) coated alginate-xanthan gum (Alg-XG) beads. Characterisation of Alg-XG-Ch, which elicited little effect on bead size and polydispersity, demonstrated good miscibility with improved bead surface smoothness and L. plantarum LAB12 entrapment when compared to Alg, Alg-Ch and Alg-XG. Sequential incubation of Alg-XG-Ch in simulated gastric juice and intestinal fluid yielded high survival rate of L. plantarum LAB12 (95%) at pH 1.8 which in turn facilitated sufficient release of probiotics (>7 log CFU/g) at pH 6.8 in both time- and pH-dependent manner. Whilst minimising viability loss at 75 and 90 °C, Alg-XG-Ch improved storage durability of L. plantarum LAB12 at 4 °C. The present results implied the possible use of L. plantarum LAB12 incorporated in Alg-XG-Ch as new functional food ingredient with health claims.
    Matched MeSH terms: Polysaccharides, Bacterial/pharmacology*
  19. Panchanathan V, Kumar S, Yeap W, Devi S, Ismail R, Sarijan S, et al.
    Bull World Health Organ, 2001;79(9):811-7.
    PMID: 11584728
    To carry out a comparative study of the safety and immunogenicity of Vi polysaccharide vaccine against whole-cell killed (WCK) typhoid vaccine.
    Matched MeSH terms: Polysaccharides, Bacterial/adverse effects; Polysaccharides, Bacterial/immunology*
  20. Billa N, Yuen KH, Khader MA, Omar A
    Int J Pharm, 2000 May 15;201(1):109-20.
    PMID: 10867269
    A xanthan gum matrix controlled release tablet formulation containing diclofenac sodium was evaluated in vitro and was found to release the drug at a uniform rate. The gastrointestinal transit behaviour of the formulation as determined by gamma scintigraphy, using healthy male volunteers under fasted and fed conditions, indicated that gastric emptying was delayed with food intake. In contrast, the small intestinal transit remained practically unchanged under both food statuses. Therefore, the delay in caecal arrival observed in the fed state can be attributed to the delay in gastric emptying. Rate of diclofenac sodium absorption was generally higher in the fed state compared to the fasted state, however the total amount absorbed under both food statuses remained practically the same. The rate of in vivo dissolution of the drug in the fed state was faster compared to that in the fasted state. Thus, at the time of caecal arrival, in vivo dissolution was complete in the fed state, unlike in the fasted state, where almost 60% of the drug was delivered to the colon.
    Matched MeSH terms: Polysaccharides, Bacterial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links