Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Deivasigamani R, Maidin NNM, Wee MFMR, Mohamed MA, Buyong MR
    Sensors (Basel), 2021 Apr 25;21(9).
    PMID: 33922993 DOI: 10.3390/s21093007
    Diabetes patients are at risk of having chronic wounds, which would take months to years to resolve naturally. Chronic wounds can be countered using the electrical stimulation technique (EST) by dielectrophoresis (DEP), which is label-free, highly sensitive, and selective for particle trajectory. In this study, we focus on the validation of polystyrene particles of 3.2 and 4.8 μm to predict the behavior of keratinocytes to estimate their crossover frequency (fXO) using the DEP force (FDEP) for particle manipulation. MyDEP is a piece of java-based stand-alone software used to consider the dielectric particle response to AC electric fields and analyzes the electrical properties of biological cells. The prototypic 3.2 and 4.8 μm polystyrene particles have fXO values from MyDEP of 425.02 and 275.37 kHz, respectively. Fibroblast cells were also subjected to numerical analysis because the interaction of keratinocytes and fibroblast cells is essential for wound healing. Consequently, the predicted fXO from the MyDEP plot for keratinocyte and fibroblast cells are 510.53 and 28.10 MHz, respectively. The finite element method (FEM) is utilized to compute the electric field intensity and particle trajectory based on DEP and drag forces. Moreover, the particle trajectories are quantified in a high and low conductive medium. To justify the simulation, further DEP experiments are carried out by applying a non-uniform electric field to a mixture of different sizes of polystyrene particles and keratinocyte cells, and these results are well agreed. The alive keratinocyte cells exhibit NDEP force in a highly conductive medium from 100 kHz to 25 MHz. 2D/3D motion analysis software (DIPP-MotionV) can also perform image analysis of keratinocyte cells and evaluate the average speed, acceleration, and trajectory position. The resultant NDEP force can align the keratinocyte cells in the wound site upon suitable applied frequency. Thus, MyDEP estimates the Clausius-Mossotti factors (CMF), FEM computes the cell trajectory, and the experimental results of prototypic polystyrene particles are well correlated and provide an optimistic response towards keratinocyte cells for rapid wound healing applications.
    Matched MeSH terms: Polystyrenes*
  2. Zhou H, Saad JM, Li Q, Xu Y
    Waste Manag, 2020 Mar 01;104:42-50.
    PMID: 31962216 DOI: 10.1016/j.wasman.2020.01.017
    Recovery of chemicals and fuels from unrecyclable waste plastics at high temperatures (>800 °C) has received much research attention. Thermodynamic equilibrium calculation suggests that it is possible to perform the low-temperature steam reforming of polystyrene. In this study, we synthesized a Ni-Fe bimetallic catalyst for the low-temperature (500 °C) steam reforming of polystyrene. XRD characterization showed that Ni-Fe alloy was formed in the catalyst. Compared to conventional Ni catalysts, the Ni-Fe bimetallic catalysts can significantly increase the H2/CO ratio in the produced gas with high gas production yield. The online gas analysis revealed that H2, CO, and CO2 were formed in the same temperature range. H2 and CO were formed simultaneously through steam reforming reactions, and CO2 was formed through water-gas shift reaction. New morphologies of carbon deposition on the catalyst surface were found, suggesting that wax could be condensed on the catalyst surface at a low temperature.
    Matched MeSH terms: Polystyrenes*
  3. Xie D, Zhang H, Wei H, Lin L, Wang D, Wang M
    Aquat Toxicol, 2023 May;258:106497.
    PMID: 36940520 DOI: 10.1016/j.aquatox.2023.106497
    The continuous fragmentation of plastics and release of synthetic nanoplastics from products have been aggravating nanoplastic pollution in the marine ecosystem. The carrier role of nanoplastics may increase the bioavailability and toxicity effects of toxic metals, e.g., mercury (Hg), which is of growing concern. Here, the copepod Tigriopus japonicus was exposed to polystyrene nanoplastics (PS NPs) and Hg (alone or combined) at environmental realistic concentrations for three generations (F0-F2). Then, Hg accumulation, physiological endpoints, and transcriptome were analyzed. The results showed that the copepod's reproduction was significantly inhibited under PS NPs or Hg exposure. The presence of PS NPs caused significantly higher Hg accumulation, lower survival, and lower offspring production in copepods relative to Hg exposure, suggesting an increased threat to the copepod's survivorship and health. From the molecular perspective, combined PS NPs and Hg caused a graver effect on the DNA replication, cell cycle, and reproduction pathways relative to Hg exposure, linking to lower levels of survivorship and reproduction. Taken together, this study provides an early warning of nanoplastic pollution for the marine ecosystem not only because of their adverse effect per se but also their carrier role for increasing Hg bioaccumulation and toxicity in copepods.
    Matched MeSH terms: Polystyrenes/toxicity
  4. Liang J, Abdullah ALB, Wang H, Liu G, Han M
    Aquat Toxicol, 2023 Oct;263:106711.
    PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711
    The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
    Matched MeSH terms: Polystyrenes/toxicity
  5. Chong WH, Chan DJC, Liu CZ, Lim J
    Electrophoresis, 2024 Mar;45(5-6):357-368.
    PMID: 38044267 DOI: 10.1002/elps.202300042
    The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.
    Matched MeSH terms: Polystyrenes/chemistry
  6. Han M, Zhu C, Tang S, Liang J, Li D, Guo Y, et al.
    Aquat Toxicol, 2023 Sep;262:106644.
    PMID: 37549485 DOI: 10.1016/j.aquatox.2023.106644
    Although there is increasing concern about the toxicity of nanoplastics, the effects of nanoplastic exposure and subsequent recovery on immune responses, as well as antioxidant responses and gut microbiota, in crustaceans are rarely reported. In this study, the nonspecific immunity and antioxidant defense of Eriocheir sinensis were evaluated after acute exposure to various concentrations (0, 2.5, 5, 10 and 20 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 48 h, as well as after 7 days of recovery from the nanoplastic environment. The results showed that, after 48 h of exposure, nanoplastics were observed in the gills, hepatopancreas and gut. However, no nanoplastics were found in the gut after 7 days of recovery. Under nanoplastic-induced stress, Hc, Relish, proPO, and LITAF mRNA levels increased in the gills and hepatopancreas for 48 h. Expression of the myd88, Hc, Relish and proPO genes decreased in the gills during the 7-day recovery period. Exposure to nanoplastics for 48 h and recovery for 7 days significantly decreased the activities of lysozyme (LZM) alkaline phosphatase (AKP), total superoxide dismutase (SOD) and phenoloxidase (POD) and, glutathione peroxidase (GPX) in the hepatopancreas. Meanwhile, the relative abundance of pathogens exposed to 10 mg/L nanoplastics for 48 h increased at the species level, and these pathogens decreased significantly in the 7-day recovery period. These results suggested that exposure to nanoplastics for 48 h affected the activities of immune system enzymes and expression of immune-related genes in Eriocheir sinensis and altered the diversity and composition of their gut microbiota. E. sinensis could not recover from damage to the hepatopancreas within a 7-day recovery period. The results of this study provided insight into the effects of nanoplastics on crustaceans and it filled a gap in research on crustacean recovery after exposure to nanoplastics.
    Matched MeSH terms: Polystyrenes/metabolism; Polystyrenes/toxicity
  7. Auta HS, Abioye OP, Aransiola SA, Bala JD, Chukwuemeka VI, Hassan A, et al.
    J Environ Manage, 2022 Feb 15;304:114273.
    PMID: 34902688 DOI: 10.1016/j.jenvman.2021.114273
    In-situ bioremediation of mangrove soil contaminated with polyethylene terephthalate (PET) and polystyrene (PS) microplastics was investigated using indigenous microbial consortium with adequate capacity to degrade the plastics. Eight (8) bacteria were isolated from plastic/microplastic-inundated mangrove soil and screened for the ability to degrade PET and PS microplastics. Optical density at 600 nm and colony forming unit counts were measured to evaluate the growth response of the microbes in the presence of PS and PET microplastics at different times of exposure. Structural and surface changes that occurred post biodegradation on the microplastics were determined through EDS and SEM analysis. The obtained results demonstrated the elongation and disappearance of peaks, suggesting that the microbial consortium could modify both types of microplastics. The overall results of the microplastic degradation showed varied degrees of weight loss after 90 experimental days, with the treated plot recorded 18% weight loss. The augmented soil was increased in the concentrations of Si S, and Fe and decreased in the concentrations of C, O, Na, Mg, Al, Cl, and K after bioremediation.
    Matched MeSH terms: Polystyrenes
  8. Mojiri A, Vishkaei MN, Zhou JL, Trzcinski AP, Lou Z, Kasmuri N, et al.
    Mar Environ Res, 2024 Feb;194:106343.
    PMID: 38215624 DOI: 10.1016/j.marenvres.2024.106343
    The increasing prevalence of microplastic pollution in aquatic environments has raised concerns about its impact on marine life. Among the different types of microplastics, polystyrene microplastics (PSMPs) are one of the most commonly detected in aquatic systems. Chaetoceros neogracile (diatom) is an essential part of the marine food web and plays a critical role in nutrient cycling. This study aimed to monitor the ecotoxicological impact of PSMPs on diatoms and observe enzymatic interactions through molecular docking simulations. Results showed that diatom growth decreased with increasing concentrations and exposure time to PSMPs, and the lowest photosynthetic efficiency (Fv/Fm) value was observed after 72 and 96 h of exposure to 200 mg L-1 of PSMPs. High concentrations of PSMPs led to a decrease in chlorophyll a content (up to 64.4%) and protein content (up to 35.5%). Molecular docking simulations revealed potential interactions between PSMPs and the extrinsic protein in photosystem II protein of diatoms, suggesting a strong affinity between the two. These findings indicate a detrimental effect of PSMPs on the growth and photosynthetic efficiency of diatoms and highlight the need for further research on the impact of microplastics on marine microbial processes.
    Matched MeSH terms: Polystyrenes/toxicity
  9. Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, et al.
    J Hazard Mater, 2024 Apr 15;468:133801.
    PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801
    Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
    Matched MeSH terms: Polystyrenes/toxicity
  10. Ahmad A, Siddique JA, Laskar MA, Kumar R, Mohd-Setapar SH, Khatoon A, et al.
    J Environ Sci (China), 2015 May 1;31:104-23.
    PMID: 25968265 DOI: 10.1016/j.jes.2014.12.008
    The direct determination of toxic metal ions, in environmental samples, is difficult because of the latter's presence in trace concentration in association with complex matrices, thereby leading to insufficient sensitivity and selectivity of the methods used. The simultaneous removal of the matrix and preconcentration of the metal ions, through solid phase extraction, serves as the promising solution. The mechanism involved in solid phase extraction (SPE) depends on the nature of the sorbent and analyte. Thus, SPE is carried out by means of adsorption, ion exchange, chelation, ion pair formation, and so forth. As polymeric supports, the commercially available Amberlite resins have been found very promising for designing chelating matrices due to its good physical and chemical properties such as porosity, high surface area, durability and purity. This review presents an overview of the various works done on the modification of Amberlite XAD resins with the objective of making it an efficient sorbent. The methods of modifications which are generally based on simple impregnation, sorption as chelates and chemical bonding have been discussed. The reported results, including the preconcentration limit, the detection limit, sorption capacity, preconcentration factors etc., have been reproduced.
    Matched MeSH terms: Polystyrenes/chemistry*
  11. Usman S, Abdull Razis AF, Shaari K, Amal MNA, Saad MZ, Mat Isa N, et al.
    PMID: 34574375 DOI: 10.3390/ijerph18189449
    Microplastics (MPs) have become pollutants of concern due to their unknown human health effect and negative impact on terrestrial and aquatic ecosystems. There is increasing number of experimental research on MPs globally with its effects not fully understood; recent animal studies explore its effects on the intestines, yet on other vital organs. Javanese medaka fish was exposed to polystyrene microplastics (PS-MPs) beads for a period of 21 days. Histological alterations, intestinal oxidative stress, permeability and neurotoxicity were evaluated. Significant inflammatory changes and tissue damage were observed in the intestine, liver and kidney. Intestinal oxidative stress and permeability were found to be significantly increased. In the brain, neurotoxicity characterised by a significant induction of oxidative stress, lipid peroxidation and the inhibition of acetylcholinesterase enzyme were elucidated. This study provided an insight into the multiple organ effect of microplastics exposure, necessitating further exploration and identification of biomarkers to be utilised for biomonitoring population at risk in the future.
    Matched MeSH terms: Polystyrenes/analysis
  12. Zhu C, Zhou W, Han M, Yang Y, Li Y, Jiang Q, et al.
    Sci Total Environ, 2023 Sep 15;891:164460.
    PMID: 37247739 DOI: 10.1016/j.scitotenv.2023.164460
    Microplastics and nanoplastics (MPs and NPs) are abundant, persistent, and widespread environmental pollutants that are of increasing concern as they pose a serious threat to ecosystems and aquatic species. Identifying the ecological effects of NPs pollution requires understanding the effects of changing nanoplastics concentrations in aquatic organisms. Monopterus albus were orally fed three different concentrations of 100 nm polystyrene nanoplastics (PS-NPs): 0.05 %, 0.5 %, and 1 % of the feed for 28 days. Nanoplastics significantly activated the PPAR signaling pathway, Acyl-CoA oxidase 1 (ACOX1), carnitine palmitoyltransferase 1a (CPT1A), angiopoietin-like 4 (ANGPTL4), and phosphoenolpyruvate carboxykinase (PCK) at the mRNA level, resulting in disturbed lipid metabolism. Glutathione peroxidase (GSH-px) activity, catalase (CAT) activity, and malondialdehyde (MDA) were significantly elevated in the high nanoplastics-feeding exposure group, leading to oxidative stress in the liver. Overexpression of the cytokines genes Interleukin 1 (IL1B) and Interleukin-8 (IL8), Tumor necrosis factor alpha (TNF-α), activation of MAPK signaling pathway, and increased gene expression of c-Jun amino-terminal kinases (JNK) and p38 indicate that exposure to NPs may lead to hepatopancreas apoptosis through oxidative stress and inflammation. In summary, dietary PS-NPs exposure alters hepatic glycolipid metabolism, triggering inflammatory responses and apoptosis in M. albus. The results of this study provide valuable ecotoxicological data for a better understanding of the biological fate and effects of nanoplastics in M. albus.
    Matched MeSH terms: Polystyrenes/toxicity
  13. Agung Efriyo Hadi, Mohd. Sapuan Salit, Megat Mohd. Hamdan Megat Ahmad, Khairul Zaman Hj Mohd. Dahlan, Mustofa Usman
    MyJurnal
    The physical properties by natural fibre have a great importance, specifically in the structural of natural fibre which reinforces matrix. Response surface methodology with Box-Behnken (BB) design of experiment was utilized to study water absorption and melt flow index (MFI) of abaca fibre reinforced high impact polystyrene (HIPS) composites. The design utilizes fraction of weight abaca fibre, maleic anhydride (MAH), and impact modifier to develop models for characteristic behaviours of water absorption and MFI of composites. Abaca fibre reinforced high impact polystyrene (HIPS) composites were produced with different fibre loadings (30, 40, and 50 wt%), different compositions of coupling agent, maleic anhydried (MAH) (1, 2, and 3 wt%) and different compositions of impact modifier (4, 5, 6 wt%). The individual optimum of water absorption was found when loading abaca fibre close to 34.61 wt%, maleic anhydride 1 wt%, and impact modifier 4.01 wt%. The individual optimum of melt flow index dealt with loading abaca fibre 36.71 wt%, maleic anhydride 3 wt% and impact modifier 4.02 wt%. Meanwhile, the optimum condition for water absorption of abaca fibre reinforced HIPS composites was followed by a decreasing trend of the value of melt flow index.
    Matched MeSH terms: Polystyrenes
  14. Shanmugam SD, Praveena SM, Wahid SA, Liew JYC
    Environ Monit Assess, 2024 Jan 12;196(2):144.
    PMID: 38214797 DOI: 10.1007/s10661-024-12330-w
    Presently, microplastic pollution has emerged as a growing environmental risk around the world. Nevertheless, knowledge of the occurrence and characteristics of microplastics in tropical agricultural soil is limited. This study investigated the pollution of surface soil microplastics in two agricultural farms located at Klang Valley, Malaysia. An extraction method based on density separation by using saturated extraction solution (sodium sulfate, ρ = 2 g cm-3 and sucrose, ρ = 1.59 g cm-3 with a ratio 1:1, v/v) was carried out. The study revealed the mean particle size of soil microplastics with 3260.76 ± 880.38 μm in farm A and 2822.31 ± 408.48 μm in farm B. The dominant types of soil microplastics were fragments and films with major colors of white (59%) and transparent (28%) in farm A, while black (52%) and white (37.6%) in farm B. Representatives of soil microplastics detected polymers of polyvinyl chloride (PVC), high density polyethylene (HDPE), polycarbonate (PC), and polystyrene (PS). The sources of plastic products were black and white plastic pipes, black plastic films for vegetation, fertilizer bottles, plastic water containers and polystyrene storage boxes, and the breakdown processes, contributed to the microplastic pollution in these farms. The outcomes of this study will establish a better understanding of microplastic pollution in tropical agricultural soil in the Southeast Asian region. The findings would be beneficial as supportive reference for the endeavor to reduce microplastic pollution in agricultural soil.
    Matched MeSH terms: Polystyrenes
  15. Yafouz B, Kadri NA, Ibrahim F
    Sensors (Basel), 2014;14(4):6356-69.
    PMID: 24705632 DOI: 10.3390/s140406356
    This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.
    Matched MeSH terms: Polystyrenes/chemistry*
  16. Yeap SP, Ahmad AL, Ooi BS, Lim J
    Langmuir, 2012 Oct 23;28(42):14878-91.
    PMID: 23025323 DOI: 10.1021/la303169g
    A detailed study on the conflicting role that colloid stability plays in magnetophoresis is presented. Magnetic iron oxide particles (MIOPs) that were sterically stabilized via surface modification with poly(sodium 4-styrene sulfonate) of different molecular weights (i.e., 70 and 1000 kDa) were employed as our model system. Both sedimentation kinetics and quartz crystal microbalance with dissipation (QCM-D) measurements suggested that PSS 70 kDa is a better stabilizer as compared to PSS 1000 kDa. This observation is mostly attributed to the bridging flocculation of PSS 1000 kDa decorated MIOPs originated from the extended polymeric conformation layer. Later, a lab-scale high gradient magnetic separation (HGMS) device was designed to study the magnetophoretic collection of MIOPs. Our experimental results revealed that the more colloidally stable the MIOP suspension is, the harder it is to be magnetically isolated by HGMS. At 50 mg/L, naked MIOPs without coating can be easily captured by HGMS at separation efficiency up to 96.9 ± 2.6%. However, the degree of separation dropped quite drastically to 83.1 ± 1.2% and 67.7 ± 4.6%, for MIOPs with PSS 1000k and PSS 70k coating, respectively. This observation clearly implies that polyelectrolyte coating that was usually employed to electrosterically stabilize a colloidal system in turn compromises the magnetic isolation efficiency. By artificially destroying the colloidal stability of the MIOPs with ionic strength increment, the ability for HGMS to recover the most stable suspension (i.e., PSS 70k-coated MIOPs) increased to >86% at 100 mM monovalent ion (Na(+)) or at 10 mM divalent ion (Ca(2+)). This observation has verified the conflicting role of colloidal stability in magnetophoretic separation.
    Matched MeSH terms: Polystyrenes/chemistry
  17. Ma Y, Gao Y, Xu R, Li D, Waiho K, Wang Y, et al.
    Mar Environ Res, 2024 Jan;193:106277.
    PMID: 38040551 DOI: 10.1016/j.marenvres.2023.106277
    Nanoplastics (NPs) and antibiotics (ABs) are two of the emerging marine contaminants that have drawn the most attention in recent years. Given the necessity of figuring out the effects of plastic and antibiotic contamination on marine organism life and population in the natural environment, it is essential to apply rapid and effective biological indicators to evaluate their comprehensive toxic effects. In this study, using mussel (Mytilus coruscus) as a model, we investigated the combined toxic effects of NP (80 nm polystyrene beads) and AB (Norfloxacin, NOR) at environmental-relevant concentrations on antioxidant and immune genes. In terms of the antioxidant genes, NPs significantly increased the relative expression of Cytochrome P450 3A-1 (CYP3A-1) under various concentrations of NOR conditions, but they only significantly increased the relative expression of CYP3A-2 in the high concentration (500 μg L-1 NOR) co-exposure group. In the NP-exposure group which exposed to no or low concentrations of NOR, nuclear factor erythroid 2-related factor 2 (Nrf2) was upregulated. In terms of the immune genes, interleukin-1 receptor-associated kinase (IRAK) -1 showed a significant increase in the low-concentration NOR group while a significant inhibition in the high-concentration NOR group. Due to the presence of NPs, exposure to NOR resulted in a significant increase in both IRAK-4 and heat shock protein (HSP) 70. Our findings indicate that polystyrene NPs can exacerbate the effects of NOR on the anti-oxidant and immune defense performance of mussels. This study delves into the toxic effects of NPs and ABs from a molecular perspective. Given the expected increase in environmental pollution due to NPs and ABs, future research is needed to investigate the potential synergistic effect of NPs and ABs on other organisms.
    Matched MeSH terms: Polystyrenes/toxicity
  18. Chang MS, Lian S, Jute N
    Trans R Soc Trop Med Hyg, 1995 3 1;89(2):140-1.
    PMID: 7778135
    A field trial of the use of expanded polystyrene beads (EPSB) to control the breeding of mosquito larvae in household septic tanks was conducted in Sarawak. One week after treatment, the breeding of Culex quinquefasciatus and Aedes albopictus was reduced by 100% and 68.7% respectively. For both species combined, a 57.25% reduction in the adult emergence rate was achieved. No adult was caught in the emergence trap one month after treatment. A reduction in mosquito biting rates was reported by 87.3% of respondents. All households regarded the EPSB treatment as effective. This study has reduced the relatively high infestation rate of A. albopictus in the septic tanks to 16-20%. The EPSB treatment is feasible and practical. Post-treatment assessment using adult emergence traps and the implications for the vector control programme of the local authority are discussed.
    Matched MeSH terms: Polystyrenes
  19. Tham FK, Ng WM, Leong SS, Yeap SP, Low SC, Lee HL, et al.
    Langmuir, 2021 Jan 26.
    PMID: 33496594 DOI: 10.1021/acs.langmuir.0c03153
    Monodispersed iron oxide nanoparticles (IONPs) coated with polystyrenesulfonate (PSS) and cetrimonium bromide (CTAB) have been used to stabilize magnetic Pickering emulsions (MPEs). Magnetophoresis of MPEs under the influence of a low gradient magnetic field (∇B < 100 T/m) was investigated at the macroscopic and microscopic scale. At the macroscopic scale, for the case of pH 7, the MPE achieved a magnetophoretic velocity of 70.9 μm/s under the influence of ∇B at 93.8 T/m. The magnetic separation efficiency of the MPE at 90% was achieved within 30 min for pH 3, 7, and 10. At pH 10, the colloidal stability of the MPE was the lowest compared to that for pH 3 and 7. Thus, MPE at pH 10 required the shortest time for achieving the highest separation efficiency, as the MPE experienced cooperative magnetophoresis at alkaline pH. The creaming rate of the MPE at all conditions was still lower compared to magnetophoresis and was negligible in influencing its separation kinetics profiles. At the microscopic scale, the migration pathways of the MPEs (with diameters between 2.5 and 7.5 μm) undergoing magnetophoresis at ∇B ∼ 13.0 T/m were recorded by an optical microscope. From these experiments, and taking into consideration the MPE size distribution from the dynamic light scattering (DLS) measurement, we determined the averaged microscopic magnetophoretic velocity to be 7.8 ± 5.5 μm/s. By making noncooperative magnetophoresis assumptions (with negligible interactions between the MPEs along their migration pathways), the calculated velocity of individual MPEs was 9.8 μm/s. Such a value was within the percentage error of the experimental result of 7.8 ± 5.5 μm/s. This finding allows for an easy and quick estimation of the magnetophoretic velocity of MPEs at the microscale by using macroscopic separation kinetics data.
    Matched MeSH terms: Polystyrenes
  20. Bachtiar, D., Sapuan, S.M., Zainudin, E.S., Khalina, A., Dahlan, K.Z.H.M.
    MyJurnal
    Thermal characterization of sugar palm fibre (SPF), reinforced high impact polystyrene (HIPS)
    composites, was studied by means of thermogravimetric analysis. The effects of alkaline treatment and compatibilizing agent on the thermal stability of the composites were evaluated. Alkaline treatment was carried out by soaking the fibres in 4 and 6% of NaOH solution, while treatment with compatibilizing agent was employed by adding 2 and 3% maleic anhydride-graft-polystyrene (MA-g-PS) to the composites. Both the treatments were aimed to improve the mechanical performance of the composites. From the study, the thermal stability of the treated composites was found to be higher than that of untreated composites. It is shown that the incorporation of sugar palm fibre influences the degree of thermal stability of the composites. The treatments on composites also contributed to shifting the peak temperature of degradation of the composites. In other words, there are strong chemical reactions between the components of the treated composites. The thermal stability of the composites, with alkaline treatment and compatibilizing agent, was found to be better as compared to those of the untreated composites.
    Matched MeSH terms: Polystyrenes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links