Displaying publications 1 - 20 of 368 in total

Abstract:
Sort:
  1. Billa N, Yuen KH, Peh KK
    Drug Dev Ind Pharm, 1998 Jan;24(1):45-50.
    PMID: 15605596
    Ethyl acrylate-methyl methacrylate copolymer (Eudragit NE40D) was evaluated as matrix material for preparing controlled-release tablets of diclofenac sodium. Drug release could be modified in a predictable manner by varying the Eudragit NE40D content, but was pH dependent, being markedly reduced at lower pH. This could be attributed to the low solubility of the drug at these pH values. Thermal treatment of the tablets at 60 degrees C was also found to affect the rate of drug release, which was found to decrease with an increase in the treatment duration, but could be stabilized after 96 hr of treatment. This was also associated with a corresponding increase in the tablet tensile strength. However, treatment of the granules for 5 hr prior to compaction into tablets could shorten the stabilizing time of the drug release to 48 hr and that of the tensile strength to 24 hr. The effect of thermal treatment may be ascribed to better coalescence of the Eudragit particles to form a fine network, resulting in matrix of higher tortuosity and lower porosity.
    Matched MeSH terms: Porosity
  2. Ujang Z, Au YL, Nagaoka H
    Water Sci Technol, 2002;46(9):109-15.
    PMID: 12448459
    This paper describes an investigation on the effect of microbial removal using IMF for high quality drinking water production. The comparison of IMF and IMF-PAC configuration was carried out in the study to highlight the importance of PAC in the system. The specific objective of this study was to study the effect of PAC adsorption in the IMF-PAC system particularly in removing microbial substances from contaminated raw water. A bench scale IMF-PAC configuration using a flat sheet microfiltration membrane was set up for experimental purposes. Experimentally, the result has shown high removal of microbial substances with the IMF-PAC system compared to IMF. The result of E. coli removal achieved was below the detectable level due to the microbial size, which is bigger than membrane pore size. The addition of PAC has shown a direct effect on total microbial removal. The adsorption of microbial onto PAC surfaces reduced the amount of smaller microbial present in permeate samples. As a conclusion, the configuration of IMF is a promising separation process in removing microbial substances, especially when the system is combined with PAC.
    Matched MeSH terms: Porosity
  3. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:202-3.
    PMID: 15468888
    In this study the surface properties of two particulate coral and polyhydroxybutrate (PHB) were studied in order to characterize them prior to use in composite production. Coral powder and PHB particle were evaluated using scanning electron microscopy and confocal laser scanning microscopy, to measure surface porosity and pores size. The results showed that coral powder has multiple pleomorphic micropores cross each others give appearance of micro-interconnectivity. Some pore reached to 18 microm with an average porosity of 70%. PHB revealed multiple different size pores extended to the depth, with an average some times reach 25 microm and porosity 45%. These findings demonstrate that both coral and PHB have excellent pores size and porosity that facilitate bone in growth, vascular invasion and bone development. We believe that incorporation of coral powder into PHB will make an excellent composite scaffold for tissue engineering.
    Matched MeSH terms: Porosity
  4. Rusnah M, Andanastuti M, Idris B
    Med J Malaysia, 2004 May;59 Suppl B:158-9.
    PMID: 15468866
    The present paper reports on the influence of sintering temperature on the porosity and strength of porous hydroxyapatite (HA). HA powder was first prepared by the sol-gel precipitation method using calcium hydroxide and ortho-phosporic acid. The fine HA powder, measuring <50 microm was then mixed into a slurry with the addition of binder agent, being a mixture of sago and PVA. A small amount of sodium dodecyl sulphate was also used as a foaming agent. Porous HA samples were then prepared via slip casting technique. The surface morphology of the sintered samples was observed under scanning electron microscopy at 20 kV and the compositions were determined via SEM-EDX. A universal testing machine was used to determine the compaction strength of the sintered samples.
    Matched MeSH terms: Porosity
  5. Pohchi A, Suzina AH, Samsudin AR, Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:151-2.
    PMID: 15468863
    This in vivo study revealed that porous hydroxyapatite (PHA) and dense hydroxyapatite (DHA) are good implant materials that can accelerate bone healing and resorbed in acceptable time. But there were differences in the mechanism of the resorption of DHA and PHA due to variability in the physical properties and osteogenicity.
    Matched MeSH terms: Porosity
  6. Idris B, Rusnah M, Reusmaazran YM, Rohaida CH
    Med J Malaysia, 2004 May;59 Suppl B:67-8.
    PMID: 15468822
    Matched MeSH terms: Porosity
  7. Azran YM, Idris B, Rusnah M, Rohaida CH
    Med J Malaysia, 2004 May;59 Suppl B:79-80.
    PMID: 15468828
    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp In this study, the HAp was prepared using polymeric sponge techniques with different binder concentrations. The sintering process was carried out in air for temperature ranging from 1200 degrees C to 1600 degrees C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentrations showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut would also be presented in this paper.
    Matched MeSH terms: Porosity
  8. Rusnah M, Andanastuti M, Idris B
    Med J Malaysia, 2004 May;59 Suppl B:83-4.
    PMID: 15468830
    The paper discusses the influence of sintering temperature on the microstructure and strength of hydroxyapatite ceramics prepared using the extrusion process. The average pore diameters observed were in the range of approximately 150mm to 300mm whereas the compaction strength was found to be around 120-160 MPa.
    Matched MeSH terms: Porosity
  9. Raouf AA, Samudin AR, Samian R, Akool K, Abdullah N
    Med J Malaysia, 2004 May;59 Suppl B:49-50.
    PMID: 15468813
    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold(10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes.
    Matched MeSH terms: Porosity
  10. Amin MC, Fell JT
    Drug Dev Ind Pharm, 2004;30(9):937-45.
    PMID: 15554218
    Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.
    Matched MeSH terms: Porosity
  11. Ahmad AL, Abd Shukor SR, Leo CP
    J Nanosci Nanotechnol, 2006 Dec;6(12):3910-4.
    PMID: 17256351
    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.
    Matched MeSH terms: Porosity
  12. Kannan, T.P., Quah, B.B., Azlina, A., Samsudin, A.R.
    MyJurnal
    Dentistry has searched for an ideal material to place in osseous defects for many years. Endogenous bone replacement has been the golden standard but involves additional surgery and may be available in limited quantities. Also, the exogenous bone replacement poses a risk of viral or bacterial transmission and the human body may even reject them. Therefore, before new biomaterials are approved for medical use, mutagenesis systems to exclude cytotoxic, mutagenic or carcinogenic properties are applied worldwide. The present preliminary study was carried out in five male New Zealand white rabbits (Oryctolagus cuniculus). Porous form of synthetic hydroxyapatite granules (500 mg), manufactured by School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, was implanted in the femur of the rabbits. Blood samples were collected prior to implantation and one week after implantation. The blood was cultured in vitro and the cell division was arrested at metaphase using colcemid. This was followed by the hypotonic treatment and fixation. Then, the chromosomes were prepared and stained for analysis. The modal chromosome number of rabbit (Oryctolagus cuniculus) was found to be 2n=44. The mean mitotic index values prior to and after implantation were 3.30 ± 0.66 and 3.24 ± 0.27 per cent respectively. No gross chromosome aberrations, both numerical and structural were noticed either prior to or after implantation of the biomaterial. These findings indicate that the test substance, synthetic hydroxyapatite granules does not produce gross chromosome aberrations under the present test conditions in rabbits.
    Matched MeSH terms: Porosity
  13. Sudesh K, Loo CY, Goh LK, Iwata T, Maeda M
    Macromol Biosci, 2007 Nov 12;7(11):1199-205.
    PMID: 17703476
    Polyhydroxyalkanoates (PHAs) have attracted the attention of academia and industry because of their plastic-like properties and biodegradability. However, practical applications as a commodity material have not materialized because of their high production cost and unsatisfactory mechanical properties. PHAs are also believed to have high-value applications as an absorbable biomaterial for tissue engineering and drug-delivery devices because of their biocompatibility. However, research in these areas is still in its very early stages. The main problem faced by proponents of PHAs is the lack of a niche area where PHAs will be the most desired material in terms of its function during use rather than because of its eco-friendly virtues after use. Here, we report on the oil-absorbing property of PHA films and its potential applications. By comparing with some of the existing commercial products, the potential application of PHAs as cosmetic oil-blotting films is revealed for the first time. Besides having the ability to rapidly absorb and retain oil, PHA films also have a natural oil-indicator property, showing obvious changes in opacity following oil absorption. Surface analysis revealed that the surface structures such as porosity and smoothness exert great influence on the rapid oil-absorption properties of the PHA films. These newly discovered properties could be exploited to create a niche area for the practical applications of PHAs.
    Matched MeSH terms: Porosity
  14. Mohd Al Amin Muhamad Nor, Lee, Chain Hong, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Ceramic foams are a class of high porosity materials that are used or being considered for a wide range of technological applications. Ceramic foam was produce by polymer replication method. In this process, commercial polymeric sponge was use as template, dipping with ceramic particles slurry, drying and then sintered to yield a replica of the original foams. The study was focus on the fabrication of different density of ceramic foams by varying the density of ceramic slurries (1.1876, 1.2687, 1.3653 and 1.5295 g/cm3). Properties of ceramic foam produced such as density was characterized accordingly to ASTM C 271-94 and porosity were characterized using Archimedes methods. Compressive and bending strength was performed accordingly to ASTM C1161-94 and C773-88 (1999), respectively. The morphological study was performed using Scanning Electron Microscopy (SEM) and EDX. Density of ceramic foams produced was about 0.5588 and 1.1852 g/cm3, where as porosity was around 26.28 and 70.59 %. Compressive and bending strength was increase from strength also increases from 2.60 to 23.07 MPa and 1.20 to 11.10 MPa, respectively, with increasing of slurries density from 1.1876 to 1.3653 g/cm3. The SEM micrographs show that the cells structure become denser as the slurries density increased. EDX proved that the ceramic used is porcelain. As a conclusion, increasing in slurries density produced ceramic foams with good mechanical properties such as compressive and bending strength and denser body.
    Matched MeSH terms: Porosity
  15. Arifin, N.M., Mokhtar, N.F.M., Nazar, R., Pop, I.
    ASM Science Journal, 2007;1(1):57-62.
    MyJurnal
    Linear stability analysis was used to investigate the onset of Marangoni convection in a two-layer system. The system comprised a saturated porous layer over which was a layer of the same fluid. The fluid was heated from below and the upper free surface was deformable. At the interface between the fluid and the porous layer, the Beavers-Joseph slip condition was used and in the porous medium the Darcy law was employed to describe the flow. Predictions for the onset of convection were obtained from the analysis by the perturbation technique. The effect of surface deformation and depth ratio, z (which is equal to the depth of the fluid layer/depth of the porous layer) on the onset of fluid motion was studied in detail.
    Matched MeSH terms: Porosity
  16. Tan IA, Ahmad AL, Hameed BH
    J Hazard Mater, 2008 Jun 15;154(1-3):337-46.
    PMID: 18035483
    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Porosity
  17. Mustaffa R, Besar I, Andanastuti M
    Med J Malaysia, 2008 Jul;63 Suppl A:95-6.
    PMID: 19025001
    In this study, porous hydroxyapatite (HA) samples were fabricated via sponge techniques with the aid of sago as part of the binder mixture. Development processes for the production of porous bone graft substitutes are studied using polyurethane sponge. To obtain the optimum amount of binder for successful fabrication of porous HA were done. Initially, porous HA powder was synthesized using calcium hydroxide and orthorphosphoric acid. Meanwhile, sago was mixed with PVA in a certain ratio to be used as binder for preparing the porous HA. After a series of investigative tests were conducted to characterize the sintered samples, the use of the sago and polymeric mixture was found to successfully aid the fabrication of porous HA samples. In this investigation, comparison of physical and mechanical characteristics between samples prepared using difference techniques was made.
    Matched MeSH terms: Porosity
  18. Tan CY, Ramesh S, Aw KL, Yeo WH, Hamdi M, Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:87-8.
    PMID: 19024997
    The sintering behaviour of synthesized HA powder that was calcined at various temperatures ranging from 700 degrees C to 1000 degrees C was investigated in terms of phase stability, bulk density, Young's modulus and Vickers hardness. The calcination treatment resulted in higher crystallinity of the starting HA powder. Decomposition of HA phase to form secondary phases was not observed in all the calcined powders. The results also indicated that powder calcination (up to 900 degrees C) prior to sintering has negligible effect on the sinterability of the HA compacts. However, powder calcined at 1000 degrees C was found to be detrimental to the properties of sintered hydroxyapatite bioceramics.
    Matched MeSH terms: Porosity
  19. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Nov 30;159(2-3):574-9.
    PMID: 18387735 DOI: 10.1016/j.jhazmat.2008.02.054
    In this work, the adsorption of malachite green (MG) on rattan sawdust (RSD) was studied at 30 degrees C. The results indicated that RSD can be used as a low-cost adsorbent for the removal of MG dye from aqueous solutions. Equilibrium data were analyzed by two isotherms, namely the Freundlich isotherm and the Langmuir isotherm. The best fit to the data was obtained with the Langmuir isotherm. The monolayer adsorption capacity of RSD was found to be 62.71 mg/g. The adsorption kinetics can be predicted by the pseudo-first-order model. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. The amount adsorbed on the outer surface was estimated from the time where film-diffusion stops controlling the adsorption rate.
    Matched MeSH terms: Porosity
  20. Kandasamy, R., Azme, Hashim, I., Ismoen, M.
    ASM Science Journal, 2008;2(1):23-33.
    MyJurnal
    The effect of chemical reaction and variable viscosity on mixed convection heat and mass transfer for Hiemenz flow over a porous wedge plate was studied in the presence of heat radiation. The wall of the wedge was embedded in a uniform Darcian porous medium to allow for possible fluid wall suction or injection and had a power-law variation of both the wall temperature and concentration. The fluid was assumed to be viscous and incompressible. Numerical calculations were carried out for different values of dimensionless parameters and an analysis of the results obtained showed that the flow field was influenced appreciably by the buoyancy ratio between species, thermal diffusion and suction/injection at wall surface. The effects of these major parameters on the transport behaviours were investigated methodically and typical results illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, and concentration distributions. Comparisons with previously published works were performed and excellent agreement between the results were obtained. It is predicted that this research might prove to be useful for study of the movement of oil or gas and water through the reservoir of an oil or gas field, in the migration of underground water, in filtration, and water purification processes.
    Matched MeSH terms: Porosity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links