Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Johari K, Alias AS, Saman N, Song ST, Mat H
    Waste Manag Res, 2015 Jan;33(1):81-8.
    PMID: 25492720 DOI: 10.1177/0734242X14562660
    The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature.
    Matched MeSH terms: Potassium Compounds/chemistry*
  2. Kupaei RH, Alengaram UJ, Jumaat MZ
    ScientificWorldJournal, 2014;2014:898536.
    PMID: 25531006 DOI: 10.1155/2014/898536
    This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
    Matched MeSH terms: Potassium Compounds/chemistry
  3. Mohd Asri MT, Elias S, Iskandar SM, Abd Halim S, Jumiah H, Zaki AR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:139-40.
    PMID: 15468857
    The aim of this work was to study radiation and the effects of temperature on conductivity properties of polyvinyl alcohol (PVA)-based potassium hydroxide (KOH) and propylene carbonate (PC), where the ionic conduction preferentially occurs in the amorphous phase by free radicals ions through gamma-irradiation. Alkaline composite polymer electrolyte (ACPE) consisting of PVA, KOH and PC of different concentration ratios were prepared by solvent-casting technique. The ACPE were irradiated with different doses from 5 kGy up to 200 kGy. The conductivity properties of the electrolyte films were measured at different frequencies in the range 20 Hz to 1 MHz using LCR meter. The results showed that the conductivity properties were dependent on the radiation dose, temperature and the concentration of the polymer blends.
    Matched MeSH terms: Potassium Compounds/radiation effects*
  4. Hosseini S, Han SJ, Arponwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Jul 26;8(1):11273.
    PMID: 30050161 DOI: 10.1038/s41598-018-29630-0
    Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0-50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5-10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5-10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.
    Matched MeSH terms: Potassium Compounds
  5. Ali LG, Nulit R, Ibrahim MH, Yien CYS
    Sci Rep, 2021 Feb 16;11(1):3864.
    PMID: 33594103 DOI: 10.1038/s41598-021-83434-3
    Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.
    Matched MeSH terms: Potassium Compounds/pharmacology*
  6. Siti Kamilah Che Soh, Siti Aminah Jusoh, Mustaffa Shamsuddin
    MyJurnal
    A polystyrene (PS)-anchored Pd(II) metal complex was synthesized on cross-linked polymer by heating a mixture of chlorometylated polystyrene with phenyldithiocarbazate and carbon disulfide in the presence of potassium hydroxide (KOH) in dimethylformamide (DMF). The reaction mixture was heated at 80 °C to form the corresponding phenyldithiocarbazate-functionalized polymer. Then, it was treated with bis(benzonitrile)palladium(II) chloride. The properties of dark colored polymer, impregnated with the metal complex was then characterized by various spectroscopic technique such as Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), CHNS elemental analysis, BET surface area, X-ray Diffraction (XRD), Thermogravimetric (TGA) and Inductively Coupled Plasma-Optical Emission (ICP-OES) spectroscopy.
    Matched MeSH terms: Potassium Compounds
  7. Dailin DJ, Elsayed EA, Othman NZ, Malek R, Phin HS, Aziz R, et al.
    Saudi J Biol Sci, 2016 Jul;23(4):495-502.
    PMID: 27298582 DOI: 10.1016/j.sjbs.2015.06.003
    Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L(-1), respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L(-1) concomitant with kefiran production of 1.91 g L(-1).
    Matched MeSH terms: Potassium Compounds
  8. Nazarudin MA, Tsan F, Adzmi Y, Normaniza O
    Sains Malaysiana, 2015;44:483-489.
    A study was conducted to determine the effects of a plant growth regulator (paclobutrazol, PBZ) and commercial
    fertilizer (Krista-K Plus) as a source of potassium nitrate (KNO3
    ) on the growth of Xanthostemon chrysantus. It was
    also attempted to investigate the anatomical changes in the leaf and stem after the treatment. Nine treatments, i.e.
    control (no PBZ and Krista-K Plus application), 0 PBZ gL-1 + 100 g Krista-K Plus, 0 PBZ gL-1 + 200 g Krista-K Plus,
    0.125 PBZ gL-1 + 0 g Krista-K Plus, 0.125 PBZ gL-1 + 100 g Krista-K Plus, 0.125 PBZ gL-1 + 200 g Krista-K Plus, 0.25
    PBZ gL-1 + 0 g Krista-K Plus, 0.25 PBZ gL-1 + 100 g Krista-K Plus and 0.25 PBZ gL-1 + 200 g Krista-K Plus, were
    tested. PBZ was soil drenched at the commencement of the study while Krista-K Plus was applied at three-month
    intervals. Plant growth performances such as tree height, diameter at breast height, canopy diameter and leaf area
    were recorded monthly throughout the study period. Stem and leaf samples were collected before the application
    of treatments and after six months of treatments for anatomical observation by using electron microscope. Plant
    height, diameter at breast height, crown diameter and leaf area were significantly reduced with the application of
    PBZ. Palisade parenchyma thickness was increased by 33.83% with 0.25 PBZ gL-1 + 200 g Krista-K Plus, while only
    2.44% increment recorded in the control tree. Xylem thickness in the stem was reduced by 21.81% after treated with
    the highest dosage of PBZ, while the control tree only had 1.78% increment. Spongy parenchyma thickness in the leaf
    was unaffected. However, palisade parenchyma was found the thickest after combined treatment with 0.25 PBZ gL-1
    + 200 g Krista-K Plus. Micrograph images of the cross-section of leaf lamina and stem showed that the cells were
    tightly arranged in response to the application of PBZ.
    Matched MeSH terms: Potassium Compounds
  9. Mohammed Salisu Musa, Mohd Marsin Sanagi, Wan Aini Wan Ibrahim, Hadi Nur
    Sains Malaysiana, 2015;44:613-618.
    Carbon spheres (CSs) were synthesized from sucrose by hydrothermal reaction. The synthesized materials were further
    activated with potassium hydroxide (KOH) at different concentrations. The effects of KOH concentration on the surface area
    and morphology were investigated. The route for pore formation and structural deformation in carbon spheres during
    activation has been proposed and discussed based on micrographs and porosity trends. It was suggested that the pore
    formation and structural deformation phenomena were due to the intercalating power of energized K+ into the carbon.
    This work provides an insight of the pore formation in carbon spheres for the development of adsorbents as well as for
    the understanding of the structural deformation of such materials at higher KOH concentrations.
    Matched MeSH terms: Potassium Compounds
  10. Zulfahmi Ali Rahman, Sahibin Abd. Rahim, Wan Muhd Razi Idris, Jasni Yaakob
    Sains Malaysiana, 2007;36(2):105-116.
    Secara geologi, kawasan Cameron Highland terdiri daripada batuan granit batolit yang merejah ke dalam batuan sedimen yang lebih tua. Rejahan jasad igneus asidik ini menyebabkan pembentukan batuan meta-sedimen dan batuan metamorfik lain sebagai sisa bumbung. Sekis sering ditemui telah mengalami luluhawa tinggi hingga sepenuhnya, berwarna kelabu cerah hingga gelap dengan butiran halus hingga sederhana dan struktur foliasi yang ketara. Manakala batuan granit mengandungi mineral kuarza, felspar dan butiran biotit dan/atau turmalin. Kebanyakan cerun potongan jalan raya yang dibina merentasi jasad batuan ini dan survei ketidakstabilan cerun dilakukan berdasarkan jenis, geometri dan cirian fiziko-kimia tanah cerun. Hasil cerapan lapangan menunjukkan bahawa jenis cerun yang gagal adalah jenis cerun tanah yang terdiri daripada jenis gelinciran cetek dan dalam. Antara faktor yang menyumbang kepada ketidakstabilan cerun adalah geometri cerun seperti cerun yang tinggi dan sudut muka cerun yang curam, sifat keperoian tanah pada cerun dan kekurangan litupan vegetasi permukaan. Ini menyebabkan permukaan cerun terdedah kepada hentaman terus hujan. Kesan daripada air larian permukaan juga menyebabkan pembentukan alur-alur hakisan pada muka cerun tanah. Sifat fiziko-kimia bahan cerun (tanah) seperti taburan saiz partikel, pH, kandungan ferum oksida, bahan organik, kandungan air, ketumpatan pukal dan sebenar serta keporosan juga didapati memainkan peranan sebagai faktor yang dalaman dalam mempengaruhi kestabilan cerun tertentu yang dikaji. Julat pH tanah yang rendah (sifat asidik) pada semua cerun mengurangkan kandungan ferum oksida dalam tanah yang bertindak sebagai bahan penyimen tanah. Ini menyebabkan agregatan tanah menjadi lemah dan mudah terhakis.
    Matched MeSH terms: Potassium Compounds
  11. Yanliang shang, Shouji du, Honghong gao, Tongyin han
    Sains Malaysiana, 2017;46:2241-2250.
    Mineral composition of rock has a very important influence on the physical and mechanical properties of tunnel surrounding rock. Take Dangjianshan tunnel in cold regions for example, the rock specimens in different parts of tunnel were taken to carry out the detection test of mineral composition. By the detail qualitative and quantitative analysis, the relationship between mineral composition and surrounding rock engineering properties was explored. First of all, the composition and content of minerals contained in in the rock specimens were detected by X ray fluorescence spectrometer and X ray powder diffraction. The detection results show that rock of tunnel contains high hardness minerals such as quartz and feldspar which were proven by initial engineering geological investigation report, in addition, it also contains several kinds of low hardness minerals including inclined chlorite and illite which may exhibit large deformation characteristic of soft rock after the tunnel excavation in case of meeting water and weathering conditions. The total content of inclined chlorite and illite accounted for a considerable component in main tunnel, inclined shaft and parallel pilot respectively and the influence on surrounding rock engineering properties cannot be ignored. Therefore, mineral composition detection must be paid attention to after tunnel excavation. Secondly, the effects of mineral composition on surrounding rock were analyzed in aspects of rock strength, weathering resistance, water softening property and excavation deformation through comparing the rock samples in different parts of tunnel. The comparative results showed that when the mineral contents is high with high hardness and poor hydrophilicity, tunnel surrounding rock plays a better performance of physical and mechanical properties, vice versa. Finally, according to the specific geological and construction parameters of the tunnel, the correlation analysis was studied about the vault settlement after tunnel excavation and the hydrophilicity mineral content in main cave. The logarithmic relationship between them was found and the correlation coefficient was 0.98. It can provide a useful reference for the settlement prediction of Dangjinshan tunnel construction.
    Matched MeSH terms: Potassium Compounds
  12. Reshak AH, Shahimin MM, Shaari S, Johan N
    Prog Biophys Mol Biol, 2013 Nov;113(2):327-32.
    PMID: 24139943 DOI: 10.1016/j.pbiomolbio.2013.10.002
    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells.
    Matched MeSH terms: Potassium Compounds/chemistry
  13. Tan JS, Abbasiliasi S, Lalung J, Tam YJ, Murugan P, Lee CK
    Prep Biochem Biotechnol, 2021;51(3):260-266.
    PMID: 32876520 DOI: 10.1080/10826068.2020.1808793
    This study aimed at purification of phycocyanin (PC) from Phormidium tergestinum using an aqueous two-phase system (ATPS) comprised of polyethylene glycol (PEG) and salts. The partitioning efficiency of PC in ATPS and the effect of phase composition, pH, crude loading, and neutral salts on purification factor and yield were investigated. Results showed that PC was selectively partitioned toward bottom phase of the system containing potassium phosphate. Under optimum conditions of 20% (w/w) PEG 4000, 10% (w/w) potassium phosphate, 20% (v/v) crude load at pH 7, with addition of 0.5% (w/w) NaCl, PC from P. tergestinum was partially purified up to 5.34-fold with a yield of 87.8%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the molecular weight of PC was ∼19 kDa. Results from this study demonstrated ATPS could be used as a potential approach for the purification of PC from P. tergestinum.
    Matched MeSH terms: Potassium Compounds/chemistry
  14. Dehzangi A, Larki F, Hutagalung SD, Goodarz Naseri M, Majlis BY, Navasery M, et al.
    PLoS One, 2013;8(6):e65409.
    PMID: 23776479 DOI: 10.1371/journal.pone.0065409
    In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (10(15) cm(-3)) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity.
    Matched MeSH terms: Potassium Compounds/chemistry
  15. Zulkefli NN, Masdar MS, Wan Isahak WNR, Md Jahim J, Md Rejab SA, Chien Lye C
    PLoS One, 2019;14(2):e0211713.
    PMID: 30753209 DOI: 10.1371/journal.pone.0211713
    Adsorption technology has led to the development of promising techniques to purify biogas, i.e., biomethane or biohydrogen. Such techniques mainly depend on the adsorbent ability and operating parameters. This research focused on adsorption technology for upgrading biogas technique by developing a novel adsorbent. The commercial coconut shell activated carbon (CAC) and two types of gases (H2S/N2 and H2S/N2/CO2) were used. CAC was modified by copper sulfate (CuSO4), zinc acetate (ZnAc2), potassium hydroxide (KOH), potassium iodide (KI), and sodium carbonate (Na2CO3) on their surface to increase the selectivity of H2S removal. Commercial H2S adsorbents were soaked in 7 wt.% of impregnated solution for 30 min before drying at 120°C for 24 h. The synthesized adsorbent's physical and chemical properties, including surface morphology, porosity, and structures, were characterized by SEM-EDX, FTIR, XRD, TGA, and BET analyses. For real applications, the modified adsorbents were used in a real-time 0.85 L single-column adsorber unit. The operating parameters for the H2S adsorption in the adsorber unit varied in L/D ratio (0.5-2.5) and feed flow rate (1.5-5.5 L/min) where, also equivalent with a gas hourly space velocity, GHSV (212.4-780.0 hour-1) used. The performances of H2S adsorption were then compared with those of the best adsorbent that can be used for further investigation. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties (i.e., crystallinity and surface area). BET analysis further shows that the modified adsorbents surface area decreased by up to 96%. Hence, ZnAc2-CAC clarify as the best adsorption capacity ranging within 1.3-1.7 mg H2S/g, whereby the studied extended to adsorption-desorption cycle.
    Matched MeSH terms: Potassium Compounds
  16. Siti Nurul Ain Md. Jamil, Rusil Daik, Ishak Ahmad
    MyJurnal
    Redox polymerization of acrylonitrile (AN) with ethyl acrylate (EA) and fumaronitrile (FN), as comonomer and termonomer respectively, were carried out using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiators at 40°C. The actual composition of monomers in copolymers and terpolymers has been characterized by gas chromatography (GC). The effects of EA and FN on the glass transition temperature (Tg) and stabilization temperature have been studied by Differential Scanning Calorimetry (DSC). The degradation behaviour and char yield were obtained by thermogravimetric analysis. Meanwhile, incorporation of 10 mol% of EA in homoPAN system was found to greatly reduce Tg to 66°C as compared to that of the homoPAN (Tg=105°C). The initial cyclization temperature (Ti) was found to be higher (264°C) in comparison to that of homoPAN (246°C). In addition, the incorporation of EA was also shown to reduce the char yield of copolymer to 40%. When FN was incorporated as termonomer, the char yield of poly(AN/EA/ FN) 90/4/6 increased up to 44% after the heat treatment with the lowest Ti (241°C).
    Matched MeSH terms: Potassium Compounds
  17. Nurulhuda Amri, Ridzuan Zakaria, Mohamad Zailani Abu Bakar
    MyJurnal
    The adsorption of phenol, from aqueous solutions on activated carbon from waste tyres, was studied in a batch system at different initial concentrations (100-500mg/L) at 30°C for 48 hours. The activated carbon was prepared using the two-step physiochemical activation, with potassium hydroxide (KOH) at ratio KOH/char = 5. The carbonization process was done at 800°C for 1 hour with nitrogen flow rate 150ml/min, followed by the activation with the carbon dioxide flow rate 150ml/min at 800°C for 2 hours. The adsorption isotherms were determined by shaking 0.1g of activated carbon with 100ml phenol solutions. The initial and final concentrations of phenol in aqueous solution were analyzed using the UV-Visible Spectrophotometer (Shimadzu, UV-1601) at a wavelength of 270nm. Experimental isotherm data were analyzed using the Langmuir and Freundlich isotherm models.The equilibrium data for phenol adsorption could fit both isotherm models well with the R2 value of 0.9774 and 0.9895, respectively. The maximum adsorption capacity of the adsorbent obtained from the Langmuir model was up to 156.25 mg/g
    Matched MeSH terms: Potassium Compounds
  18. Jamil SNAM, Daik R, Ahmad I
    Materials (Basel), 2014 Sep 01;7(9):6207-6223.
    PMID: 28788187 DOI: 10.3390/ma7096207
    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA) and FN were 55%-71%, 85%-91% and 76%-79%, respectively. It was found that with the same comonomer feed (10%), the Tg of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C). AN/EHA/FN terpolymer also exhibited a lower Tg at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C). By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%). It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1%) and AN/EHA copolymer (38.0%).
    Matched MeSH terms: Potassium Compounds
  19. Atif M, Khalid SH, Onn Kit GL, Sulaiman SA, Asif M, Chandersekaran A
    J Young Pharm, 2013 Mar;5(1):26-9.
    PMID: 24023449 DOI: 10.1016/j.jyp.2013.01.005
    A simple, sensitive and selective HPLC method with UV detection for determination of Glipizide in human plasma was developed. Liquid-liquid extraction method was used to extract the drug from the plasma samples. Chromatographic separation of Glipizide was achieved using C18 column (ZORBAX ODS 4.6 × 150 mm). The mobile phase was comprised of 0.01 M potassium dihydrogen phosphate and acetonitrile (65:35, v/v) adjusted to pH 4.25 with glacial acetic acid. The analysis was run at a flow rate of 1.5 mL/min with an injection volume was 20 μL. The detector was operated at 275 nm. The calibration curve was linear over a concentration range of 50-1600 ng/mL. Intra-day and inter-day precision and accuracy values were below 15%. The limit of quantification was 50 ng/mL and the mean recovery was above 98%. Freeze-thaw, short-term, long-term and post-preparative stability studies showed that Glipizide in plasma sample was stable. The method may be successfully applied to analyze the Glipizide concentration in plasma samples for bioavailability and bioequivalence studies.
    Matched MeSH terms: Potassium Compounds
  20. Al-Maqtari AA, Lui JL
    J Prosthodont, 2010 Jul;19(5):347-56.
    PMID: 20456026 DOI: 10.1111/j.1532-849X.2010.00593.x
    The purpose of this in vitro study was to determine if packable resin composite with/without flowable resin composite has the ability to prevent coronal leakage in restored endodontic access openings following aging.
    Matched MeSH terms: Potassium Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links