Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Ilias, N.N., Jamal, P., Sulaiman, S., Jaswir, I., Ansari, A.H., Azmi, A.S., et al.
    MyJurnal
    Bioprotein is one of the useful products obtained from biotechnology invention. It is a promising replacement for the commercial fish feed supplement. In this study, the enrichment of the bioprotein content after solid state fermentation using palm kernel cake and seaweed by the white rot fungus: Phanerochaete chrysoporium and yeast: Candida utilis was carried out. The growth media components were selected from 11 types of media using Plackett-Burman design (hereinafter PBD) and were optimized by one-factor-at-a-time (OFAT) method with bioprotein concentration (mg/g) as the response. From the screening result using PBD, three media components, namely K2HPO4, CuSO4.5H2O and MnSO4.H2O were selected for further optimization using OFAT method because of their positive contributions to the response. The final results showed that 5.0 g/L K2HPO4, 3.0 g/L CuSO4.5H2O and 0.1 g/L MnSO4.H2O were there to be the optimum media constituents with 9.0 g/L, MgSO4.7H2O, 0.1 g/L, CaCl2.H2O, 3.0 g/L FeSO4.7H2O and 3.0 g/L peptone as fixed compositions. At this optimum concentration, the protein increment of 11% was observed as compared to the results determined in the screening using PBD. The study revealed the benefits of using mixed cultures in improving the protein concentrations which can be used as nutritious fish feed.
    Matched MeSH terms: Potassium Compounds
  2. Ahmad Saat, Zaini Hamzah
    MyJurnal
    Clay has been regarded as very important natural industrial materials. All these industries exploit the properties that clay can be molded into any shape and fired to dry without losing its form. A study was carried out on clay samples from eight sites in the north-eastern part of Peninsular Malaysia. The study was accomplished by using X-ray diffraction (XRD) technique. The x-ray diffraction spectra obtained enable the determination of the lattice spacing associated with the types of clay and nonclay minerals present in the samples. Results of the study shows that the major components of clay minerals present in all samples studied are kaolinite and illite. The presence of kaolinite is confirmed by firing test in which the kaolinite diffraction peaks disappeared upon heating the samples at 600 o C. The presence of non-clay minerals such as quartz, mica, feldspar and chlorite are also observed.
    Matched MeSH terms: Potassium Compounds
  3. Rohaizar MH, Sepeai S, Surhada N, Ludin NA, Ibrahim MA, Sopian K, et al.
    Heliyon, 2019 Nov;5(11):e02790.
    PMID: 31768436 DOI: 10.1016/j.heliyon.2019.e02790
    Continuing trend in silicon wafer thickness directed at cost reduction approaches basic boundaries created by: (a) mismatch between Al paste and Si wafer thermal expansion and (b) incomplete optical absorption. With its symmetrical front and back electrical contacts, the bifacial solar cell setup reduces stress due to mismatch thermal expansion, decreases metal use and increases high temperature efficiency. Efficiency improvement is accomplished in bifacial solar cells by capturing light from the back surface. Partially transparent wafers provide an option to improve near-infrared radiation absorption within Si wafer. To fully absorb optical radiation, three-dimensional texture of these kinds of wafers is essential. Pulsed laser interactions, thermal oxidation, and wet chemical etching are included in this research. A feature of its energy and pattern setup is the interaction of pulsed laser with Si, running at 1.064 μm wavelength and micro-second length. Two experimental settings were explored: (a) post-laser chemical etching with potassium hydro-oxide etching with thermal oxide as etching mask and (b) post-laser heat Si surface oxidation. Due to fast melting and recrystallization, laser pulsed processing inherently produces its own texture. Some of these spherically-shaped, randomly focused characteristics improve inner scattering and boost near-infrared absorption within the wafer. These characteristics are separated during chemical etching with the thermally-grown oxide layer as an etch mask. Comparison of optical absorption in both surfaces shows almost a rise in the magnitude of absorption in non-etched surfaces. Detailed optical (optical microscope and IR absorption), morphological (field emission scanning electron microscope) and heat imaging (far IR camera) analyses were performed to comprehend physical processes that contribute to near-IR absorption improvement. Such kinds of partially-transparent, three-dimensional textured Si wafers are anticipated to discover applications for bifacial solar cells as substrates.
    Matched MeSH terms: Potassium Compounds
  4. Ali LG, Nulit R, Ibrahim MH, Yien CYS
    Sci Rep, 2021 Feb 16;11(1):3864.
    PMID: 33594103 DOI: 10.1038/s41598-021-83434-3
    Rice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72-92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.
    Matched MeSH terms: Potassium Compounds/pharmacology*
  5. Sasidharan S, Uyub AM
    FEMS Immunol. Med. Microbiol., 2009 Jun;56(1):94-7.
    PMID: 19309485 DOI: 10.1111/j.1574-695X.2009.00554.x
    The present study was aimed at modifying the original formulation of Commercial Eugon agar (CEA) to develop a new H. pylori growth medium. Initial studies were carried out to determine the number of H. pylori colonies recovered on in-house H. pylori agar (IHPA), IHPA without L-cysteine and sodium sulfite (IHPA-NC), IHPA without L-cysteine (IHPA-C), IHPA without sodium sulfite (IHPA-N) and CEA as the control. Significant differences (P < 0.001) in the number of colonies recovered were observed between IHPA-N, IHPA-NC and IHPA-C. Incorporation of sodium sulfite decreased the number of colonies recovered, indicating that sodium sulfite was inhibitory to H. pylori growth. Removal of L-cysteine reduced the number of colonies recovered, suggesting that L-cysteine is necessary for the growth of H. pylori. In the subsequent study, incorporation of K(2)HPO(4) further increased the number of colonies recovered compared with IHPA-N (P < 0.001), and 0.25% (w/v) of K(2)HPO(4) yielded the highest numbers of colonies (P < or = 0.04). Finally, thirty other H. pylori clinical isolates were evaluated for their growth in the IHPAP-N, a new medium consisting of 1.5% (w/v) pepticase, 0.5% (w/v) peptone, 0.4% (w/v) sodium chloride, 0.03% (w/v) L-cysteine, 0.55% (w/v) dextrose, 0.25% (w/v) K(2)HPO(4) and 1.5% (w/v) agar. The number of colonies recovered in IHPAP-N was significantly (P < 0.005) higher than that of CEA. IHPAP-N with 0.25% K(2)HPO(4) and without sodium sulfite were adequate solid media for the growth of H. pylori.
    Matched MeSH terms: Potassium Compounds
  6. Yanliang shang, Shouji du, Honghong gao, Tongyin han
    Sains Malaysiana, 2017;46:2241-2250.
    Mineral composition of rock has a very important influence on the physical and mechanical properties of tunnel surrounding rock. Take Dangjianshan tunnel in cold regions for example, the rock specimens in different parts of tunnel were taken to carry out the detection test of mineral composition. By the detail qualitative and quantitative analysis, the relationship between mineral composition and surrounding rock engineering properties was explored. First of all, the composition and content of minerals contained in in the rock specimens were detected by X ray fluorescence spectrometer and X ray powder diffraction. The detection results show that rock of tunnel contains high hardness minerals such as quartz and feldspar which were proven by initial engineering geological investigation report, in addition, it also contains several kinds of low hardness minerals including inclined chlorite and illite which may exhibit large deformation characteristic of soft rock after the tunnel excavation in case of meeting water and weathering conditions. The total content of inclined chlorite and illite accounted for a considerable component in main tunnel, inclined shaft and parallel pilot respectively and the influence on surrounding rock engineering properties cannot be ignored. Therefore, mineral composition detection must be paid attention to after tunnel excavation. Secondly, the effects of mineral composition on surrounding rock were analyzed in aspects of rock strength, weathering resistance, water softening property and excavation deformation through comparing the rock samples in different parts of tunnel. The comparative results showed that when the mineral contents is high with high hardness and poor hydrophilicity, tunnel surrounding rock plays a better performance of physical and mechanical properties, vice versa. Finally, according to the specific geological and construction parameters of the tunnel, the correlation analysis was studied about the vault settlement after tunnel excavation and the hydrophilicity mineral content in main cave. The logarithmic relationship between them was found and the correlation coefficient was 0.98. It can provide a useful reference for the settlement prediction of Dangjinshan tunnel construction.
    Matched MeSH terms: Potassium Compounds
  7. Baroutian S, Aroua MK, Raman AA, Sulaiman NM
    Bioresour Technol, 2011 Jan;102(2):1095-102.
    PMID: 20888219 DOI: 10.1016/j.biortech.2010.08.076
    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.
    Matched MeSH terms: Potassium Compounds/chemistry
  8. Leong HY, Su CA, Lee BS, Lan JC, Law CL, Chang JS, et al.
    Bioresour Technol, 2019 Jan;271:30-36.
    PMID: 30261334 DOI: 10.1016/j.biortech.2018.09.093
    Microalgae biorefinery is presently receiving a lot of attention as driven by its production of high value-added products. In this study, an oleaginous microalga Aurantiochytrium limacinum SR21 was cultured for docosahexaenoic acid (DHA) production using 20% (w/v) of K2HPO4-waste feedstock to replace 0.005% (w/v) of KH2PO4 in the flask culture. DHA is an essential nutrient for human's brain functionalities. Collectively, the K2HPO4-waste feedstock with working concentration of 0.005% (w/v) in the cultivation prompted a higher lipid content (8.29%) and DHA production (128.81 mg.L-1). Moreover, natural plant pigment products containing stabilised betacyanins were utilised as natural red colourants for hard candy production. This study develops microalgal cultivation using salt-rich waste feedstock for a higher lipid and DHA content as well as application of natural colouring agents in food products.
    Matched MeSH terms: Potassium Compounds
  9. Chew KW, Chia SR, Krishnamoorthy R, Tao Y, Chu DT, Show PL
    Bioresour Technol, 2019 Sep;288:121519.
    PMID: 31128541 DOI: 10.1016/j.biortech.2019.121519
    Liquid biphasic flotation (LBF), an integrated process of liquid biphasic system (LBS) and adsorptive bubbles flotation, was used for the purification of C-phycocyanin from S. platensis microalgae. Various experimental parameters such as type of phase forming polymer and salt, concentration of phase forming components, system pH, volume ratio, air flotation time and crude extract concentration were evaluated to maximise the C-phycocyanin recovery yield and purity. The optimal conditions for the LBF system achieving C-phycocyanin purification fold of 3.49 compared to 2.43 from the initial LBF conditions was in polyethylene glycol (PEG) 4000 and potassium phosphate combination, with 250 g/L of polymer and salt concentration each, volume ratio of 1:0.85, system pH of 7.0, air flotation duration of 7 min and phycocyanin crude extract concentration of 0.625 %w/w. The LBF has effectively enhanced the purification of C-phycocyanin in a cost effective and simple processing.
    Matched MeSH terms: Potassium Compounds
  10. Sabiha-Hanim S, Mohd Noor MA, Rosma A
    Carbohydr Polym, 2015 Jan 22;115:533-9.
    PMID: 25439929 DOI: 10.1016/j.carbpol.2014.08.087
    Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation.
    Matched MeSH terms: Potassium Compounds/chemistry
  11. Nazarudin MA, Tsan F, Adzmi Y, Normaniza O
    Sains Malaysiana, 2015;44:483-489.
    A study was conducted to determine the effects of a plant growth regulator (paclobutrazol, PBZ) and commercial
    fertilizer (Krista-K Plus) as a source of potassium nitrate (KNO3
    ) on the growth of Xanthostemon chrysantus. It was
    also attempted to investigate the anatomical changes in the leaf and stem after the treatment. Nine treatments, i.e.
    control (no PBZ and Krista-K Plus application), 0 PBZ gL-1 + 100 g Krista-K Plus, 0 PBZ gL-1 + 200 g Krista-K Plus,
    0.125 PBZ gL-1 + 0 g Krista-K Plus, 0.125 PBZ gL-1 + 100 g Krista-K Plus, 0.125 PBZ gL-1 + 200 g Krista-K Plus, 0.25
    PBZ gL-1 + 0 g Krista-K Plus, 0.25 PBZ gL-1 + 100 g Krista-K Plus and 0.25 PBZ gL-1 + 200 g Krista-K Plus, were
    tested. PBZ was soil drenched at the commencement of the study while Krista-K Plus was applied at three-month
    intervals. Plant growth performances such as tree height, diameter at breast height, canopy diameter and leaf area
    were recorded monthly throughout the study period. Stem and leaf samples were collected before the application
    of treatments and after six months of treatments for anatomical observation by using electron microscope. Plant
    height, diameter at breast height, crown diameter and leaf area were significantly reduced with the application of
    PBZ. Palisade parenchyma thickness was increased by 33.83% with 0.25 PBZ gL-1 + 200 g Krista-K Plus, while only
    2.44% increment recorded in the control tree. Xylem thickness in the stem was reduced by 21.81% after treated with
    the highest dosage of PBZ, while the control tree only had 1.78% increment. Spongy parenchyma thickness in the leaf
    was unaffected. However, palisade parenchyma was found the thickest after combined treatment with 0.25 PBZ gL-1
    + 200 g Krista-K Plus. Micrograph images of the cross-section of leaf lamina and stem showed that the cells were
    tightly arranged in response to the application of PBZ.
    Matched MeSH terms: Potassium Compounds
  12. Dehzangi A, Larki F, Hutagalung SD, Goodarz Naseri M, Majlis BY, Navasery M, et al.
    PLoS One, 2013;8(6):e65409.
    PMID: 23776479 DOI: 10.1371/journal.pone.0065409
    In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (10(15) cm(-3)) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity.
    Matched MeSH terms: Potassium Compounds/chemistry
  13. Lin YK, Show PL, Yap YJ, Ariff A, Annuar MSBM, Lai OM, et al.
    Front Chem, 2018;6:448.
    PMID: 30345267 DOI: 10.3389/fchem.2018.00448
    An extractive bioconversion conducted on soluble starch with cyclodextrin glycosyltransferase (CGTase) enzyme in ethylene oxide-propylene oxide (EOPO)/potassium phosphates liquid biphasic system (LBS) to extract gamma-cyclodextrin (γ-CD) was examined. A range of EOPO (with potassium phosphates) molecular weights was screen to investigate the effect of the latter on the partioning efficency of CGTase and γ-CD. The results show that the optimal top phase γ-CD yield (74.4%) was reached in 35.0% (w/w) EOPO 970 and 10.0% (w/w) potassium phosphate with 2.0% (w/w) sodium chloride. A theoretical explanation for the effect of NaCl on γ-CD was also presented. After a 2 h bioconversion process, a total of 0.87 mg/mL concentration of γ-CD was produced in the EOPO/ phosphates LBS top phase. After the extraction of top phase from LBS, four continuous repetitive batches were successfully conducted with relative CGTase activity of 1.00, 0.86, 0.45, and 0.40 respectively.
    Matched MeSH terms: Potassium Compounds
  14. Siti Kamilah Che Soh, Siti Aminah Jusoh, Mustaffa Shamsuddin
    MyJurnal
    A polystyrene (PS)-anchored Pd(II) metal complex was synthesized on cross-linked polymer by heating a mixture of chlorometylated polystyrene with phenyldithiocarbazate and carbon disulfide in the presence of potassium hydroxide (KOH) in dimethylformamide (DMF). The reaction mixture was heated at 80 °C to form the corresponding phenyldithiocarbazate-functionalized polymer. Then, it was treated with bis(benzonitrile)palladium(II) chloride. The properties of dark colored polymer, impregnated with the metal complex was then characterized by various spectroscopic technique such as Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), CHNS elemental analysis, BET surface area, X-ray Diffraction (XRD), Thermogravimetric (TGA) and Inductively Coupled Plasma-Optical Emission (ICP-OES) spectroscopy.
    Matched MeSH terms: Potassium Compounds
  15. Amid M, Abdul Manap MY, Mustafa S
    PMID: 23770734 DOI: 10.1016/j.jchromb.2013.05.009
    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%.
    Matched MeSH terms: Potassium Compounds
  16. Nurulhuda Amri, Ridzuan Zakaria, Mohamad Zailani Abu Bakar
    MyJurnal
    The adsorption of phenol, from aqueous solutions on activated carbon from waste tyres, was studied in a batch system at different initial concentrations (100-500mg/L) at 30°C for 48 hours. The activated carbon was prepared using the two-step physiochemical activation, with potassium hydroxide (KOH) at ratio KOH/char = 5. The carbonization process was done at 800°C for 1 hour with nitrogen flow rate 150ml/min, followed by the activation with the carbon dioxide flow rate 150ml/min at 800°C for 2 hours. The adsorption isotherms were determined by shaking 0.1g of activated carbon with 100ml phenol solutions. The initial and final concentrations of phenol in aqueous solution were analyzed using the UV-Visible Spectrophotometer (Shimadzu, UV-1601) at a wavelength of 270nm. Experimental isotherm data were analyzed using the Langmuir and Freundlich isotherm models.The equilibrium data for phenol adsorption could fit both isotherm models well with the R2 value of 0.9774 and 0.9895, respectively. The maximum adsorption capacity of the adsorbent obtained from the Langmuir model was up to 156.25 mg/g
    Matched MeSH terms: Potassium Compounds
  17. Mohd Asri MT, Elias S, Iskandar SM, Abd Halim S, Jumiah H, Zaki AR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:139-40.
    PMID: 15468857
    The aim of this work was to study radiation and the effects of temperature on conductivity properties of polyvinyl alcohol (PVA)-based potassium hydroxide (KOH) and propylene carbonate (PC), where the ionic conduction preferentially occurs in the amorphous phase by free radicals ions through gamma-irradiation. Alkaline composite polymer electrolyte (ACPE) consisting of PVA, KOH and PC of different concentration ratios were prepared by solvent-casting technique. The ACPE were irradiated with different doses from 5 kGy up to 200 kGy. The conductivity properties of the electrolyte films were measured at different frequencies in the range 20 Hz to 1 MHz using LCR meter. The results showed that the conductivity properties were dependent on the radiation dose, temperature and the concentration of the polymer blends.
    Matched MeSH terms: Potassium Compounds/radiation effects*
  18. Johari K, Alias AS, Saman N, Song ST, Mat H
    Waste Manag Res, 2015 Jan;33(1):81-8.
    PMID: 25492720 DOI: 10.1177/0734242X14562660
    The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature.
    Matched MeSH terms: Potassium Compounds/chemistry*
  19. Al-Maqtari AA, Lui JL
    J Prosthodont, 2010 Jul;19(5):347-56.
    PMID: 20456026 DOI: 10.1111/j.1532-849X.2010.00593.x
    The purpose of this in vitro study was to determine if packable resin composite with/without flowable resin composite has the ability to prevent coronal leakage in restored endodontic access openings following aging.
    Matched MeSH terms: Potassium Compounds/chemistry
  20. Lin YK, Show PL, Yap YJ, Ariff AB, Mohammad Annuar MS, Lai OM, et al.
    J Biosci Bioeng, 2016 Jun;121(6):692-696.
    PMID: 26702953 DOI: 10.1016/j.jbiosc.2015.11.001
    Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
    Matched MeSH terms: Potassium Compounds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links