Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Abubakar MB, Abdullah WZ, Sulaiman SA, Ang BS
    PMID: 24772179 DOI: 10.1155/2014/371730
    Propolis (a bee product) which has a long history of medicinal use by humans has attracted a great deal of research interest in the recent time; this is due to its widely reported biological activities such as antiviral, antifungal, antibacterial, anti-inflammatory, antioxidant, and anticarcinogenic properties. Crude form of propolis and its phenolic contents have both been reported to exhibit antileukaemic effects in various leukaemia cell lines. The ability of the polyphenols found in propolis to arrest cell cycle and induce apoptosis and differentiation in addition to inhibition of cell growth and proliferation makes them promising antileukaemic agents, and hence, they are believed to be a key to the antileukaemic effects of propolis in different types of leukaemia. This paper reviews the molecular bases of antileukaemic activity of both crude propolis and individual polyphenols on various leukaemia cell lines, and it indicates that propolis has the potential to be used in both treatment and prevention of leukaemia. This however needs further evaluation by in vitro, in vivo, and epidemiological studies as well as clinical trials.
    Matched MeSH terms: Propolis
  2. Ahmed R, Tanvir EM, Hossen MS, Afroz R, Ahmmed I, Rumpa NE, et al.
    PMID: 28261310 DOI: 10.1155/2017/5370545
    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.
    Matched MeSH terms: Propolis
  3. Boukraâ L, Sulaiman SA
    Recent Pat Antiinfect Drug Discov, 2009 Nov;4(3):206-13.
    PMID: 19673699
    Honey and other bee products were subjected to laboratory and clinical investigations during the past few decades and the most remarkable discovery was their antibacterial activity. Honey has been used since ancient times for the treatment of some diseases and for the healing of wounds but its use as an anti-infective agent was superseded by modern dressings and antibiotic therapy. However, the emergence of antibiotic resistant strains of bacteria has confounded the current use of antibiotic therapy leading to the re-examination of former remedies. Honey, propolis, royal jelly and bee venom have a strong antibacterial activity. Even antibiotic-resistant strains such as epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycine resistant Enterococcus (VRE) have been found to be as sensitive to honey as the antibiotic-sensitive strains of the same species. Sensitivity of bacteria to bee products varies considerably within the product and the varieties of the same product. Botanical origin plays a major role in its antibacterial activity. Propolis has been found to have the strongest action against bacteria. This is probably due to its richness in flavonoids. The most challenging problems of using hive products for medical purposes are dosage and safety. Honey and royal jelly produced as a food often are not well filtered, and may contain various particles. Processed for use in wound care, they are passed through fine filters which remove most of the pollen and other impurities to prevent allergies. Also, although honey does not allow vegetative bacteria to survive, it does contain viable spores, including clostridia. With the increased availability of licensed medical stuffs containing bee products, clinical use is expected to increase and further evidence will become available. Their use in professional care centres should be limited to those which are safe and with certified antibacterial activities. The present article is a short review of recent patents on antibiotics of hives.
    Matched MeSH terms: Propolis/pharmacology; Propolis/chemistry
  4. Chao CY, Mani MP, Jaganathan SK
    PLoS One, 2018;13(10):e0205699.
    PMID: 30372449 DOI: 10.1371/journal.pone.0205699
    Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications.
    Matched MeSH terms: Propolis/toxicity; Propolis/chemistry
  5. Chen CL, Parolia A, Pau A, Celerino de Moraes Porto IC
    Aust Dent J, 2015 Mar;60(1):65-72.
    PMID: 25721280 DOI: 10.1111/adj.12275
    Dentine hypersensitivity (DH) occurs on exposed dentine and is dependent on the patency of dentinal tubules. This study compared the effectiveness of red propolis extract (RPE), calcium sodium phosphosilicate (Novamin) and arginine-calcium carbonate (ACC) in occluding dentine tubules.
    Matched MeSH terms: Propolis/pharmacology
  6. Chua EG, Parolia A, Ahlawat P, Pau A, Amalraj FD
    BMC Oral Health, 2014;14:53.
    PMID: 24886335 DOI: 10.1186/1472-6831-14-53
    To investigate the antifungal activity of propolis, triple antibiotic paste (TAP), 2% chlorhexidine gel and calcium hydroxide with propylene glycol on Candida albicans-infected root canal dentinal tubules at two different depths (200 μm and 400 μm) and two time intervals (day 1 and 7).
    Matched MeSH terms: Propolis/pharmacology
  7. Ekeuku SO, Chin KY
    Molecules, 2021 May 25;26(11).
    PMID: 34070497 DOI: 10.3390/molecules26113156
    Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities. A literature search was performed using Pubmed, Scopus, and Web of Science to identify studies on the effects of propolis on bone health. The search string used was (i) propolis AND (ii) (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). Eighteen studies were included in the current review. The available experimental studies demonstrated that propolis could prevent bone loss due to periodontitis, dental implantitis, and diabetes in animals. Combined with synthetic and natural grafts, it could also promote fracture healing. Propolis protects bone health by inhibiting osteoclastogenesis and promoting osteoblastogenesis, partly through its antioxidant and anti-inflammatory actions. Despite the promising preclinical results, the skeletal protective effects of propolis are yet to be proven in human studies. This research gap should be bridged before nutraceuticals based on propolis with specific health claims can be developed.
    Matched MeSH terms: Propolis/pharmacology*
  8. Eleazu C, Suleiman JB, Othman ZA, Zakaria Z, Nna VU, Hussain NHN, et al.
    Arch Physiol Biochem, 2020 Apr 22.
    PMID: 32319823 DOI: 10.1080/13813455.2020.1752258
    Context: Global prevalence of obesity is increasing. Objective: To study the effect of bee bread (BB) on serum renal function parameters, oxidative stress, inflammatory and B-cell associated protein X (Bax) in the kidneys of high fat diet (HFD) obese rats. Methods: Thirty-six male Sprague Dawley rats were used. Control: received rat diet and water (1 mL/kg); HFD group: received HFD and water (1 mL/kg): bee bread (BB) preventive or orlistat preventive: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg); BB or orlistat treatment: received BB (0.5 g/kg) or orlistat (10 mg/kg). Results: HFD group had increased body weight, Body Mass Index, Lee Obesity Indices, kidney weights, malondialdehyde, inflammatory markers, Bax; decreased glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, total antioxidant activity, no differences (p > .05) in food intakes, serum creatinine, sodium, potassium, chloride, catalase compared to control. Conclusion: BB modulated most of these parameters, as corroborated by histology.
    Matched MeSH terms: Propolis
  9. Gemiarto AT, Ninyio NN, Lee SW, Logis J, Fatima A, Chan EW, et al.
    Antonie Van Leeuwenhoek, 2015 Aug;108(2):491-504.
    PMID: 26059863 DOI: 10.1007/s10482-015-0503-6
    The emergence of antibiotic-resistant bacterial pathogens, especially Gram-negative bacteria, has driven investigations into suppressing bacterial virulence via quorum sensing (QS) inhibition strategies instead of bactericidal and bacteriostatic approaches. Here, we investigated several bee products for potential compound(s) that exhibit significant QS inhibitory (QSI) properties at the phenotypic and molecular levels in Chromobacterium violaceum ATCC 12472 as a model organism. Manuka propolis produced the strongest violacein inhibition on C. violaceum lawn agar, while bee pollen had no detectable QSI activity and honey had bactericidal activity. Fractionated manuka propolis (pooled fraction 5 or PF5) exhibited the largest violacein inhibition zone (24.5 ± 2.5 mm) at 1 mg dry weight per disc. In C. violaceum liquid cultures, at least 450 µg/ml of manuka propolis PF5 completely inhibited violacein production. Gene expression studies of the vioABCDE operon, involved in violacein biosynthesis, showed significant (≥two-fold) down-regulation of vioA, vioD and vioE in response to manuka propolis PF5. A potential QSI compound identified in manuka propolis PF5 is a hydroxycinnamic acid-derivative, isoprenyl caffeate, with a [M-H] of 247. Complete violacein inhibition in C. violaceum liquid cultures was achieved with at least 50 µg/ml of commercial isoprenyl caffeate. In silico docking experiments suggest that isoprenyl caffeate may act as an inhibitor of the violacein biosynthetic pathway by acting as a competitor for the FAD-binding pockets of VioD and VioA. Further studies on these compounds are warranted toward the development of anti-pathogenic drugs as adjuvants to conventional antibiotic treatments, especially in antibiotic-resistant bacterial infections.
    Matched MeSH terms: Propolis/chemistry*
  10. Ismail IH, Al-Bayaty FH, Yusof EM, Gulam Khan HBS, Hamka FA, Azmi NA
    J Conserv Dent, 2021 02 10;23(5):489-496.
    PMID: 33911359 DOI: 10.4103/JCD.JCD_528_20
    Introduction: Enterococcus faecalis can be found in failed endodontic treatment (FET) even after performing primary endodontic treatment (PET). Calcium hydroxide (Ca(OH)2) cannot fully eliminate this microorganism during PET. Brazilian green propolis (bee glue) was found to be more effective against E. faecalis when compared to Ca(OH)2. A much less studied Malaysian geopropolis (MP) as well as Aloe vera (AV) is antibacterial but is unknown against E. faecalis.

    Objective: The objective of this study is to determine the antimicrobial effects of MP, AV, and MP + AV in comparison with Ca(OH)2 against E. faecalis, as an intracanal medicament.

    Materials and Methods: Antimicrobial activity of MP, AV, MP + AV, Ca(OH)2, and dimethyl sulfoxide was tested against E. faecalis using antimicrobial sensitivity testing, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The results were analyzed by Kruskal-Wallis test with Mann-Whitney post hoc test and repeated measures analysis of variance with Bonferroni post hoc test (P < 0.05).

    Results: For agar well-diffusion method, MP + AV gave maximum inhibition zone diameter (mean: 8.11 ± 0.015 mm), MP (mean: 6.21 ± 0.046 mm, Ca(OH)2 (mean: 5.5 ± 0.006), and AV (mean: 5.05 ± 0.012) with P < 0.05. MIC for MP + AV was 2 mg/ml, MP at 8 mg/ml, Ca(OH)2 at 8 mg/ml, and AV at 16 mg/ml. The MBC for MP + AV is at 4 mg/ml, MP at 16 mg/ml, Ca(OH)2 at 16 mg/ml, and AV at 32 mg/ml.

    Conclusion: The combination of MP and AV consistently showed better antimicrobial activity compared to MP and AV alone against E. faecalis. The findings suggest that MP and AV used in combination may be an ideal intracanal medicament in FET and PET.

    Matched MeSH terms: Propolis
  11. Jacob A, Parolia A, Pau A, Davamani Amalraj F
    PMID: 26303848 DOI: 10.1186/s12906-015-0814-1
    To evaluate and compare the effects of ethanolic extracts of Malaysian propolis and Brazilian red propolis at different concentrations on the migration and proliferation of fibroblast cells.
    Matched MeSH terms: Propolis/pharmacology*
  12. Jibril FI, Mohd Hilmi AB, Aliyu S
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S831-S835.
    PMID: 33828385 DOI: 10.4103/jpbs.JPBS_280_19
    Introduction: Stingless bee is an insect that belongs to the family Apidae. Its name is based on its disability of stinging. It has a high product of Meliponini honey and propolis by which are commonly referred to as stingless bee honey and stingless bee propolis. Meliponini honey is one of the crucial natural sources and has the potential to kill infectious microorganisms. Previous studies have proved that the antibacterial activity of natural honey was an effect of hydrogen peroxide, a substance contained in the honey. However, these claims were contradicting with too many studies.

    Objective: Therefore, this study aimed to identify the antibacterial activity of Malaysian Meliponini honey which contained non-hydrogen peroxide against Staphylococcus aureus, an opportunistic microbial.

    Materials and Methods: Meliponini honey was used as an antibacterial agent for the treatment of S. aureus in agar well diffusion assay. An amplex red hydrogen peroxide kit was used to identify the hydrogen peroxide in the honey sample. Meanwhile, non-hydrogen peroxide activity was performed by using honey-catalase treated.

    Results: For the first time, we found that hydrogen peroxide was absent in all Meliponini honey samples. Meliponini honey has higher antibacterial activity (13.30 ± 0.56mm) compared to Apis honey (9.03 ± 0.22mm) in agar well diffusion assay.

    Discussion: Non-hydrogen peroxide in Meliponini honey is a bioactive compound and beneficial to kill the microbial infection.

    Conclusion: Antibacterial activity of Malaysian Meliponini honey is directly contributed by non-hydrogen peroxide.

    Matched MeSH terms: Propolis
  13. Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N
    Molecules, 2021 Feb 11;26(4).
    PMID: 33670262 DOI: 10.3390/molecules26040957
    Stingless bee-collected pollen (bee bread) is a mixture of bee pollen, bee salivary enzymes, and regurgitated honey, fermented by indigenous microbes during storage in the cerumen pot. Current literature data for bee bread is overshadowed by bee pollen, particularly of honeybee Apis. In regions such as South America, Australia, and Southeast Asia, information on stingless bee bee bread is mainly sought to promote the meliponiculture industry for socioeconomic development. This review aims to highlight the physicochemical properties and health benefits of bee bread from the stingless bee. In addition, it describes the current progress on identification of beneficial microbes associated with bee bread and its relation to the bee gut. This review provides the basis for promoting research on stingless bee bee bread, its nutrients, and microbes for application in the food and pharmaceutical industries.
    Matched MeSH terms: Propolis/therapeutic use; Propolis/chemistry*
  14. Mustafa MZ, Zulkifli FN, Fernandez I, Mariatulqabtiah AR, Sangu M, Nor Azfa J, et al.
    PMID: 31885664 DOI: 10.1155/2019/8258307
    This study was conducted to evaluate the effects of stingless bee honey (SBH) supplementation on memory and learning in mice. Despite many studies that show the benefits of honey on memory, reports on the nootropic effects of SBH are still lacking, and their underlying mechanism is still unclear. SBH is a honey produced by the bees in the tribe of Meliponini that exist in tropical countries. It features unique storage of honey collected in cerumen pots made of propolis. This SBH may offer a better prospect for therapeutic performance as the previous report identifies the presence of antioxidants that were greater than other honey produced by Apis sp. In this study, SBH was tested on Swiss albino mice following acute (7 days) and semichronic (35 days) supplementation. Experiments were then conducted using Morris water maze (MWM) behaviour analysis, RT-PCR for gene expression of mice striatum, and NMR for metabolomics analysis of the honey. Results indicate spatial working memory and spatial reference memory of mice were significantly improved in the honey-treated group compared with the control group. Improved memory consolidations were also observed in prolonged supplementation. Gene expression analyses of acutely treated mice demonstrated significant upregulation of BDNF and Itpr1 genes that involve in synaptic function. NMR analysis also identified phenylalanine, an essential precursor for tyrosine that plays a role at the BDNF receptor. In conclusion, SBH supplementation for seven days at 2000 mg/kg, which is equivalent to a human dose of 162 mg/kg, showed strong capabilities to improve spatial working memory. And prolonged intake up to 35 days increased spatial reference memory in the mice model. The phenylalanine in SBH may have triggered the upregulation of BDNF genes in honey-treated mice and improved their spatial memory performance.
    Matched MeSH terms: Propolis
  15. Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M
    Food Chem Toxicol, 2018 Oct;120:305-320.
    PMID: 30026088 DOI: 10.1016/j.fct.2018.07.028
    Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1β and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.
    Matched MeSH terms: Propolis
  16. Nna VU, Bakar ABA, Ahmad A, Umar UZ, Suleiman JB, Zakaria Z, et al.
    Andrology, 2020 05;8(3):731-746.
    PMID: 31816190 DOI: 10.1111/andr.12739
    BACKGROUND: Diabetes mellitus is one of the risk factors for male subfertility/infertility. Malaysian propolis is reported to decrease hyperglycaemia in diabetic state.

    OBJECTIVES: The present study investigated the protective effect of Malaysian propolis on diabetes-induced subfertility/infertility. Additionally, its combined beneficial effects with metformin were investigated.

    MATERIALS AND METHODS: Forty adult male Sprague Dawley rats were randomly assigned into five groups, namely normal control, diabetic control, diabetic + Malaysian propolis (300 mg/k.g. b.w.), diabetic + metformin (300 mg/kg b.w.) and diabetic + Malaysian propolis + metformin. Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.) and treatment lasted for 4 weeks. During the 4th week, mating behavioural experiments were performed using sexually receptive female rats. Thereafter, fertility parameters were assessed in the female rats.

    RESULTS: Malaysian propolis increased serum and intratesticular free testosterone levels, up-regulated the mRNA levels of AR and luteinizing hormone receptor, up-regulated the mRNA and protein levels of StAR, CYP11A1, CYP17A1, 3β-HSD and 17β-HSD in the testes of diabetic rats. Furthermore, Malaysian propolis up-regulated testicular MCT2, MCT4 and lactate dehydrogenase type C mRNA levels, in addition to improving sperm parameters (count, motility, viability and normal morphology) and decreasing sperm nDNA fragmentation in diabetic rats. Malaysian propolis improved mating behaviour by increasing penile guanosine monophosphate levels. Malaysian propolis also improved fertility outcome as seen with decreases in pre- and post-implantation losses, increases in gravid uterine weight, litter size per dam and foetal weight. Malaysian propolis's effects were comparable to metformin. However, their combination yielded better results relative to the monotherapeutic interventions.

    CONCLUSION: Malaysian propolis improves fertility potential in diabetic state by targeting steroidogenesis, testicular lactate metabolism, spermatogenesis and mating behaviour, with better effects when co-administered with metformin. Therefore, Malaysian propolis shows a promising complementary effect with metformin in mitigating Diabetes mellitus-induced subfertility/infertility.

    Matched MeSH terms: Propolis/pharmacology*
  17. Nna VU, Bakar ABA, Mohamed M
    Life Sci, 2018 Oct 15;211:40-50.
    PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018
    AIMS: Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects.

    MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle.

    KEY FINDINGS: Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats.

    SIGNIFICANCE: Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.

    Matched MeSH terms: Propolis/therapeutic use*
  18. Noor Albannia Natasya Jabi, Hazmi Awang Damit
    Borneo Akademika, 2019;3(1):1-9.
    MyJurnal
    Heterotrigona itama is a Malaysian stingless bee species that actively reared for meliponiculture. This stingless bee is cultivated in a commercial scale for its honey production, propolis and among the greatest commercial potential as crop pollinators. However, this species has been potentially exposed to agronomic practices, among which the use of synthetic insecticides against pests.The indirect toxicity effect of the post-insecticide had affected the mortalities of H. itama especially, to the foragers. Due to that, a study has been conducted to determine the lethal concentration of 50% (LC50) and 95% (LC95) of the selected insecticides against stingless bee forager workers through residual exposure. The bioassay test was conducted to the local stingless bee H. itama at Agricultural Research Station, Tenom. Four commonly used insecticides in crop protection; Deltamethrin, Chlorpyrifos, Cypermethrin and Malathion were tested at five concentrations that diluted with 500 ml of distilled water in three replications for each insecticide. Lethal concentrations (LC50 and LC95) were obtained from probit analysis after 1-hour dry residues exposure and 24-hour mortality observation. The result shows that; all four tested insecticides were harmful to H. itama through dry residue. Deltamethrin shows the higher value of LC50 (1.256 ml) and LC95 (3.582ml) that make it less toxic to the H. itama than cypermethrin, malathion, and chlorpyrifos, however, as the concentration gets higher it becomes more toxic.
    Matched MeSH terms: Propolis
  19. Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, et al.
    PLoS One, 2017;12(3):e0174888.
    PMID: 28362873 DOI: 10.1371/journal.pone.0174888
    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
    Matched MeSH terms: Propolis/chemistry*
  20. Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, Davamani F
    PLoS One, 2019;14(2):e0213079.
    PMID: 30818374 DOI: 10.1371/journal.pone.0213079
    Staphylococcus epidermidis, is a common microflora of human body that can cause opportunistic infections associated with indwelling devices. It is resistant to multiple antibiotics necessitating the need for naturally occurring antibacterial agents. Malaysian propolis, a natural product obtained from beehives exhibits antimicrobial and antibiofilm properties. Chitosan-propolis nanoparticles (CPNP) were prepared using Malaysian propolis and tested for their effect against S. epidermidis. The cationic nanoparticles depicted a zeta potential of +40 and increased the net electric charge (zeta potential) of S. epidermidis from -17 to -11 mV in a concentration-dependent manner whereas, ethanol (Eth) and ethyl acetate (EA) extracts of propolis further decreased the zeta potential from -17 to -20 mV. Confocal laser scanning microscopy (CLSM) depicted that CPNP effectively disrupted biofilm formation by S. epidermidis and decreased viability to ~25% compared to Eth and EA with viability of ~60-70%. CPNP was more effective in reducing the viability of both planktonic as well as biofilm bacteria compared to Eth and EA. At 100 μg/mL concentration, CPNP decreased the survival of biofilm bacteria by ~70% compared to Eth or EA extracts which decreased viability by only 40%-50%. The morphology of bacterial biofilm examined by scanning electron microscopy depicted partial disruption of biofilm by Eth and EA extracts and significant disruption by CPNP reducing bacterial number in the biofilm by ~90%. Real time quantitative PCR analysis of gene expression in treated bacteria showed that genes involved in intercellular adhesion such as IcaABCD, embp and other related genes were significantly downregulated by CPNP. In addition to having a direct inhibitory effect on the survival of S. epidermidis, CPNP showed synergism with the antibiotics rifampicin, ciprofloxacin, vancomycin and doxycycline suggestive of effective treatment regimens. This would help decrease antibiotic treatment dose by at least 4-fold in combination therapies thereby opening up ways of tackling antibiotic resistance in bacteria.
    Matched MeSH terms: Propolis/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links