Displaying publications 1 - 20 of 101 in total

Abstract:
Sort:
  1. Syahrom A, Abdul Kadir MR, Harun MN, Öchsner A
    Med Eng Phys, 2015 Jan;37(1):77-86.
    PMID: 25523865 DOI: 10.1016/j.medengphy.2014.11.001
    Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones.
    Matched MeSH terms: Prostheses and Implants*
  2. Faisal, A., Ahmad, S.H., Zulmi, W.
    MyJurnal
    Tumour surgery for locally extensive malignant neoplasms of the extremity will sometimes result in extensive composite soft tissue defect. Local flaps are usually inadequate to cover these large defects. More than one tissue flap might be required to cover any exposed neurovascular structures, bone or prosthesis. We present two cases where two composite flaps were simultaneously used to cover extensive surgical defects after ablative tumour resections in the extremity. These resulted in uncomplicated wound healing and limb salvage.
    Matched MeSH terms: Prostheses and Implants
  3. Murugan K, Faisham WI, Zulmi W
    Malays Orthop J, 2021 Mar;15(1):93-99.
    PMID: 33880154 DOI: 10.5704/MOJ.2103.014
    Introduction: Mega endoprosthesis replacement for resection of primary malignant bone tumour requires immediate and long-term stability, particularly in the young and active patient. Extracortical bone bridge interface (EBBI) is a technique whereby autograft is wrapped around the interface junction of bone and porous-coated implant to induce and enhance bone formation for biological incorporation. This procedure increases the mean torsional stiffness and the mean maximum torque, which eventually improves the implant's long-term survival.

    Material and methods: The extracortical bone bridge interface's radiological parameter was evaluated at the prosthesis bone junction two years after surgery utilising a picture archiving and communication system (PACS). The radiograph's anteroposterior and lateral view was analysed for both thickness and length in all four cortices. The analysis was done in SPSS Version 24 using One-Way ANOVA and independent T-Test. Results were presented as mean and standard deviation and considered significant when the p-value was < 0.05.

    Results: The mean average thickness was 2.2293mm (SD 1.829), and the mean average length was 31.95% (SD 24.55). We observed that the thickness and length of EBBI were superior in the young patient or patients with giant cell tumour that did not receive chemotherapy, compared to patients treated for osteosarcoma. The distal femur also had better EBBI compared to the proximal tibia. However, the final multivariable statistical analysis showed no significant difference in all variables. EBBI thickness was significantly and positively correlated with EBBI Length (p<0.001). We conclude that, for each 1mm increase in EBBI thickness, the length will increase by 0.06% on average. About 17.2% of patients out of the 29 showed no radiological evidence of EBBI.

    Conclusion: From our study, there were no factors that significantly contributed to the formation and incorporation of EBBI.

    Matched MeSH terms: Prostheses and Implants
  4. Alwi M, Kang LM, Samion H, Latiff HA, Kandavel G, Zambahari R
    Am J Cardiol, 1997 May 15;79(10):1430-2.
    PMID: 9165178 DOI: 10.1016/s0002-9149(97)00160-4
    Two hundred eleven patients with small- to moderate-sized native patent ductus arteriosus underwent closure using Gianturco coils, employing the transvenous multiple catheter approach. Short-term results showed a high rate of complete occlusion and a potential long-term complication of mild left pulmonary artery stenosis in a small number of patients.
    Matched MeSH terms: Prostheses and Implants*
  5. Soliman MM, Chowdhury MEH, Khandakar A, Islam MT, Qiblawey Y, Musharavati F, et al.
    Sensors (Basel), 2021 May 02;21(9).
    PMID: 34063296 DOI: 10.3390/s21093163
    Implantable antennas are mandatory to transfer data from implants to the external world wirelessly. Smart implants can be used to monitor and diagnose the medical conditions of the patient. The dispersion of the dielectric constant of the tissues and variability of organ structures of the human body absorb most of the antenna radiation. Consequently, implanting an antenna inside the human body is a very challenging task. The design of the antenna is required to fulfill several conditions, such as miniaturization of the antenna dimension, biocompatibility, the satisfaction of the Specific Absorption Rate (SAR), and efficient radiation characteristics. The asymmetric hostile human body environment makes implant antenna technology even more challenging. This paper aims to summarize the recent implantable antenna technologies for medical applications and highlight the major research challenges. Also, it highlights the required technology and the frequency band, and the factors that can affect the radio frequency propagation through human body tissue. It includes a demonstration of a parametric literature investigation of the implantable antennas developed. Furthermore, fabrication and implantation methods of the antenna inside the human body are summarized elaborately. This extensive summary of the medical implantable antenna technology will help in understanding the prospects and challenges of this technology.
    Matched MeSH terms: Prostheses and Implants*
  6. Chuah HG, Abd Rahim I, Yusof MI
    Comput Methods Biomech Biomed Engin, 2010 Jun;13(3):319-26.
    PMID: 19927241 DOI: 10.1080/10255840903208189
    The stress shielding effect is an event in which the replacement implant limits the load transferred to bone and the ineffective stress in the vertebrae causes bony growth to cease. In the present study, a 3D finite element L4-L5 model was developed and subjected to a 1200 N compression preload. Five groups of muscle forces were applied on L4 under flexion-extension, lateral bending and axial rotation. Topology optimisation was employed for reducing the stress shielding effect by removing the ineffective material from the design domain. The optimised design was designed with polyaryletheretherketone (PEEK) titanium and cortical materials to encounter the shielding response. The stress responses show that the new design increased the stress magnitude by at least 17.10, 18.11 and 18.43% in 4 Nm of flexion-extension, lateral bending and axial rotation, respectively. In conclusion, the material factor did not significantly alter the stress magnitude, but volume was the key factor in reducing the stress shielding effect.
    Matched MeSH terms: Prostheses and Implants*
  7. Singh VA, Heng CW, Yasin NF
    Indian J Orthop, 2018 2 9;52(1):65-72.
    PMID: 29416172 DOI: 10.4103/ortho.IJOrtho_188_17
    Background: Limb salvage surgery with endoprosthesis for bone tumor around the knee is reported to have good functional and oncological outcomes. However, the functional assessment using musculoskeletal tumor society (MSTS) and Toronto extremity scoring system remains subjective. We performed gait analysis as an objective assessment of their functional outcome.

    Materials and Methods: Gait analysis was performed in 20 patients with endoprosthesis replacement around the knee. The temporal parameters assessed during gait analysis were walking velocity, stride length, duration of stance, and goniometry of the knee. These parameters were compared with the functional outcome score of the MSTS.

    Results: The mean free-paced walking velocity was 0.91 m/s (normal is 1.33 m/s), which was 68% lower than normal gait. The stride length and stance phase were shorter for the affected limb compared to normal (P < 0.05). However, the gait was symmetrical with no difference in stride length (P = 0.148), velocity (P = 0.918), knee flexion (P = 0.465), and knee extension (P = 0.321) between the affected and unaffected limbs. Sixteen patients demonstrated stiff knee gait, two had a flexed knee gait, and only two patients had normal gait during the stance phase. The mean MSTS score was 21. There was significant correlation between overall MSTS scores (P = 0.023), function (P = 0.039), and walking scores (P = 0.007).

    Conclusion: Limb salvage surgery with endoprosthesis reconstruction around the knee gives good functional outcome, both objectively and subjectively, as evidenced by the symmetrical gait pattern and significant correlation with MSTS score. Despite decreased walking velocity, stride length, and stance phase of the operated limb, the patient still has a symmetrical gait.

    Matched MeSH terms: Prostheses and Implants
  8. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK
    Proc Inst Mech Eng H, 2014 Oct;228(10):1083-99.
    PMID: 25406229 DOI: 10.1177/0954411914556137
    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
    Matched MeSH terms: Prostheses and Implants/microbiology*
  9. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Prostheses and Implants*
  10. Sia U, Tan BB, Teo YY, Wong CC
    Malays Orthop J, 2019 Mar;13(1):14-19.
    PMID: 31001378 DOI: 10.5704/MOJ.1903.002
    Introduction: Post-implantation rod deformation is anticipated in scoliosis surgery but the difference in rod deformation between titanium and cobalt chrome rod has not been elucidated. This study aims to compare the difference in rod deformation between two groups. Materials and Methods: Twenty-one adolescent idiopathic scoliosis (AIS) patients were recruited from a single center. The over-contoured concave rods were traced prior to insertion. Post-operative sagittal rod shape was determined from lateral radiographs. Rod deformation was determined using maximal rod deflection and angle of the tangents to rod end points. The differences between pre- and post-operative rod contour were analysed statistically. Rod deformation and thoracic kyphosis between two types of implants were analysed. Results: Both rods exhibited significant change of rod angle and deflection post-operatively. Curvature of the titanium rod and cobalt chrome rod decreased from 60.5° to 37°, and 51° to 28° respectively. Deflection of titanium rod and cobalt chrome rod reduced from 28mm to 23.5mm and 30mm to 17mm respectively. There was no significant difference between titanium and cobalt chrome groups with regard to rod angle (p=0.173) and deflection (p=0.654). Thoracic kyphosis was increased from 20° to 26° in titanium group but a reduction from 25° to 23° was noticed in cobalt chrome group, but these findings were not statistically significant. Conclusion: There was no statistical difference in rod deformation between the two groups. Thus, the use of titanium rod in correction of sagittal profile is not inferior in outcome compared with cobalt chrome but with lower cost.
    Matched MeSH terms: Prostheses and Implants
  11. Saravanan S, Vivek AS
    Med J Malaysia, 2007 Dec;62(5):418-9.
    PMID: 18705481 MyJurnal
    This is to report on the use of growing endoprosthesis, also known as lengthening prosthesis in the management of four patients in the paedriatic age group in the Orthopaedic Oncolgy Unit at University Malaya Medical Centre. These are custom made prosthesis, designed and made in India based on measured roentrograms. The ages of these patients vary from 6 to 13 years old. These are cases of Osteosarcoma and Ewing's sarcoma around the knee. This is the first time these custom made prosthesis have ever been used in Malaysia. We feel that this is a feasible option for limb salvage in the treatment of primary bone tumours in growing children.
    Matched MeSH terms: Prostheses and Implants*
  12. Natarajan P, Choudhury M, Seenivasan MK, Jeyapalan K, Natarajan S, Vaidhyanathan AK
    J Pharm Bioallied Sci, 2019 May;11(Suppl 2):S402-S406.
    PMID: 31198377 DOI: 10.4103/JPBS.JPBS_48_19
    Aim: This study evaluated the relationship between missing posterior teeth and body mass index with regard to age and socioeconomic state in a sample of the suburban south Indian population.

    Materials and Methods: The 500 individuals of both males and females aged 40 years and older with missing posterior teeth and not rehabilitated with any prosthesis were gone through a clinical history, intraoral examination, and anthropometric measurement to get information regarding age, sex, socioeconomic status, missing posterior teeth, and body mass index (BMI). Subjects were divided into five groups according to BMI (underweight > 18.5 kg/m2, normal weight 18.5-23 kg/m2, overweight 23-25 kg/m2, obese without surgery 25-32.5 kg/m2, obese with surgery < 32.5 kg/m2). Multivariate logistic regression was used to adjust data according to age, sex, number of missing posterior teeth, and socioeconomic status.

    Results: People with a higher number of tooth loss were more obese. Females with high tooth loss were found to be more obese than male. Low socioeconomic group obese female had significantly higher tooth loss than any other group. No significant relation between age and obesity was found with regard to tooth loss.

    Conclusion: The BMI and tooth loss are interrelated. Management of obesity and tooth loss can help to maintain the overall health status.

    Matched MeSH terms: Prostheses and Implants
  13. Wong PS, Tan GP
    Med J Malaysia, 2000 Dec;55(4):516-9.
    PMID: 11221168
    We report two cases of large chest wall primary chondrosarcoma, one of the sternum and the other of the lateral chest wall. Both were treated by radical resection and reconstruction using marlex mesh and methyl methacrylate "sandwich" prosthesis and pedicled latissiumus dorsi flap.
    Matched MeSH terms: Prostheses and Implants
  14. Singh, S., Choon, S.K., Tai, C.C.
    Malays Orthop J, 2008;2(2):34-36.
    MyJurnal
    We describe herein a modified technique for reconstruction of chronic rupture of the quadriceps tendon in a patient with bilateral total knee replacement and distal realignment of the patella. The surgery involved the application of a Dacron graft and the ‘double eights’ technique. The patient achieved satisfactory results after surgery and we believe that this technique of reconstruction offers advantages over other methods.
    Matched MeSH terms: Prostheses and Implants
  15. Jaganathan SK, Mohandas H, Sivakumar G, Kasi P, Sudheer T, Avineri Veetil S, et al.
    Biomed Res Int, 2014;2014:963149.
    PMID: 24955370 DOI: 10.1155/2014/963149
    Blood compatibility of metallocene polyethylene (mPE) was investigated after modifying the surface using hydrochloric acid. Contact angle of the mPE exposed to HCl poses a decrease in its value which indicates increasing wettability and better blood compatibility. Surface of mPE analyzed by using FTIR revealed no significant changes in its functional groups after treatment. Furthermore, scanning electron microscope images supported the increasing wettability through the modifications like pit formations and etching on the acid rendered surface. To evaluate the effect of acid treatment on the coagulation cascade, prothrombin time (PT) and activated partial thromboplastin time (APTT) were measured. Both PT and APTT were delayed significantly (P < 0.05) after 60 min exposure implying improved blood compatibility of the surfaces. Hemolysis assay of the treated surface showed a remarkable decrease in the percentage of lysis of red blood cells when compared with untreated surface. Moreover, platelet adhesion assay demonstrated that HCl exposed surfaces deter the attachment of platelets and thereby reduce the chances of activation of blood coagulation cascade. These results confirmed the enhanced blood compatibility of mPE after HCl exposure which can be utilized for cardiovascular implants like artificial vascular prostheses, implants, and various blood contacting devices.
    Matched MeSH terms: Prostheses and Implants/adverse effects; Prostheses and Implants/ultrastructure*
  16. Hamidi MFFA, Harun WSW, Samykano M, Ghani SAC, Ghazalli Z, Ahmad F, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Sep 01;78:1263-1276.
    PMID: 28575965 DOI: 10.1016/j.msec.2017.05.016
    Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development.
    Matched MeSH terms: Prostheses and Implants
  17. Shan L, Kadhum AAH, Al-Furjan MSH, Weng W, Gong Y, Cheng K, et al.
    Materials (Basel), 2019 Mar 10;12(5).
    PMID: 30857349 DOI: 10.3390/ma12050815
    It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous⁻stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.
    Matched MeSH terms: Prostheses and Implants
  18. Nur Faraidah Muhammad Di, Sharipah Soaad Syed Yahaya, Suhaida Abdullah
    Sains Malaysiana, 2014;43:643-648.
    An alternative robust method for testing the equality of central tendency measures was developed by integrating H Statistic with adaptive trimmed mean using hinge estimator, HQ. H Statistic is known for its ability to control Type I error rates and HQ is a robust location estimator. This robust estimator used asymmetric trimming technique, where it trims the tail of the distribution based on the characteristic of that particular distribution. To investigate on the performance (i.e. robustness) of the procedure, some variables were manipulated to create conditions which are known to highlight its strengths and weaknesses. Bootstrap method was used to test the hypothesis. The integration seemed to produce promising robust procedure that is capable of addressing the problem of violations to the assumptions. About 20% trimming is the appropriate amount of trimming for the procedure, where this amount is found to be robust in most conditions. This procedure was also proven to be robust as compared to the parametric (AN0vA) and non parametric (Kruskal-Wallis) methods.
    Matched MeSH terms: Prostheses and Implants
  19. Radzi, Z., Yahya, N.A., Zamzam, N., Spencer, R.J.
    Ann Dent, 2004;11(1):-.
    MyJurnal
    Missing teeth can be due to hypodontia, trauma or extraction. In general, the options for treatment depend on the severity of the hypodontia and the severity of the malocclusion. Occasionally, the space from missing teeth has to be maintained for prosthetic replacement and require an orthodontic/restorative approach. It is very important to ensure the space maintained is adequate for aesthetic reason so that it can be replaced with a prosthesis after the orthodontic treatment is completed. This article discusses a new innovation and clinical technique for maintaining this space during orthodontic treatment by using an acrylic tooth with several modifications. This innovation will be illustrated using two cases.
    Matched MeSH terms: Prostheses and Implants
  20. Narhari P, Haseeb A, Lee S, Singh VA
    Indian J Orthop, 2018 2 9;52(1):87-90.
    PMID: 29416176 DOI: 10.4103/ortho.IJOrtho_495_17
    Chondroblastomas are a primary benign cartilaginous tumor that accounts for approximately 1% of all benign bone tumors. Primarily they are treated by curettage. The patient presented 4 years after a successfully treated chondroblastoma (curettage and Bone cement). Wide resection of the proximal tibia with endoprosthesis replacement was done. Lung CT showed multiple lung metastasis and despite starting chemotherapy, he succumbed to the disease. We discuss regarding the possibilities of "aggressive" chondroblastoma and more recently termed chondroblastoma-like osteosarcoma which is a separate entity from chondroblastoma. Aggressiveness in chondroblastoma can be 1 of 3 types as follows: 1. benign chondroblastoma with lung metastasis. 2. malignant chondroblastoma. 3. subsequent malignant transformation of benign chondroblastoma. We have attempted to review the literature and describe the "aggressive" chondroblastoma and chondroblastoma-like osteosarcoma in this report.
    Matched MeSH terms: Prostheses and Implants
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links