Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Abdul Rahman MB, Karjiban RA, Salleh AB, Jacobs D, Basri M, Thean Chor AL, et al.
    Protein Pept Lett, 2009;16(11):1360-70.
    PMID: 20001926
    The stability of biocatalysts is an important criterion for a sustainable industrial operation economically. T1 lipase is a thermoalkalophilic enzyme derived from Geobacillus zalihae strain T1 (T1 lipase) that was isolated from palm oil mill effluent (POME) in Malaysia. We report here the results of high temperatures molecular dynamics (MD) simulations of T1 lipase in explicit solvent. We found that the N-terminal moiety of this enzyme was accompanied by a large flexibility and dynamics during temperature-induced unfolding simulations which preceded and followed by clear structural changes in two specific regions; the small domain (consisting of helices alpha3 and alpha5, strands beta1 and beta2, and connecting loops) and the main catalytic domain or core domain (consisting of helices alpha6- alpha9 and connecting loops which located above the active site) of the enzyme. The results suggest that the small domain of model enzyme is a critical region to the thermostability of this organism.
    Matched MeSH terms: Protein Structure, Secondary
  2. Agarwal T, Annamalai N, Khursheed A, Maiti TK, Arsad HB, Siddiqui MH
    J Mol Graph Model, 2015 Sep;61:141-9.
    PMID: 26245696 DOI: 10.1016/j.jmgm.2015.07.003
    Recent developments in the target based cancer therapies have identified HSF1 as a novel non oncogenic drug target. The present study delineates the design and molecular docking evaluation of Rohinitib (RHT) - Cantharidin (CLA) based novel HSF1 inhibitors for target-based cancer therapy. Here, we exploited the pharmacophoric features of both the parent ligands for the design of novel hybrid HSF1 inhibitors. The RHT-CLA ligands were designed and characterized for ADME/Tox features, interaction with HSF1 DNA binding domain and their pharmacophoric features essential for interaction. From the results, amino acid residues Ala17, Phe61, His63, Asn65, Ser68, Arg71 and Gln72 were found crucial for HSF1 interaction with the Heat shock elements (HSE). The hybrid ligands had better affinity towards the HSF1 DNA binding domain, in comparison to RHT or CLA and interacted with most of the active site residues. Additionally, the HSF1-ligand complex had a reduced affinity towards HSE in comparison to native HSF1. Based on the results, ligand RC15 and RC17 were non carcinogenic, non mutagenic, completely biodegradable under aerobic conditions, had better affinity for HSF1 (1.132 and 1.129 folds increase respectively) and diminished the interaction of HSF1 with HSE (1.203 and 1.239 folds decrease respectively). The simulation analysis also suggested that the ligands formed a stable complex with HSF1, restraining the movement of active site residues. In conclusion, RHT-CLA hybrid ligands can be used as a potential inhibitor of HSF1 for non-oncogene target based cancer therapy.
    Matched MeSH terms: Protein Structure, Secondary
  3. Asadollahi K, Jasemi NS, Riazi GH, Katuli FH, Yazdani F, Sartipnia N, et al.
    Int J Biol Macromol, 2016 Nov;92:1307-1312.
    PMID: 26905468 DOI: 10.1016/j.ijbiomac.2016.02.045
    In this study, the catalase-like activity of monomeric tau protein was reported in the presence of of zinc (Zn(II)) ions at low pH value. Monomeric tau protein contains two SH groups that are a target of disulfide bond formation. However these SH groups are able to interact with Zn(II) ion at pH 7.2 which creates a thiol bond as a mimetic model of chloroperoxidase active site which performs catalase like activity at low pH. Zn(II)/tau protein complex decomposed H2O2 with a high rate (Vm) as well as an efficient turn oven number (kcat) at pH 3. This remarkable catalase like activity is may be attributed to the conformational reorientation of protein at low pH. Circular dichroism (CD) studies did not demonstrate any secondary structural changes of tau protein after addition of Zn(II) ions at pH 7.2. In addition, tau protein shows identical CD bands at pH 7.2 and 3. Moreover, fluorescence quenching of tau by Zn(II) at pH 7.2 was initiated by complex formation rather than by dynamic collision. A significant red shift (6nm) was observed in the emission maximum of the fluorescence spectra when the protein was dissolved at pH 3 compared to pH 7.2. This conformational change can provide information regarding the rearrangements of the protein structure and exposure of Cys-Zn(II) group to the solvent which induces easy access of active site to H2O2 molecules and corresponding enhanced catalytic activity of Zn(II)/tau protein complex. This study introduces tau protein as a bio-inspired high performing scaffold for transition metal encapsulation and introducing an engineered apoprotein-induced biomimetic enzyme.
    Matched MeSH terms: Protein Structure, Secondary
  4. Cao H, Ng MCK, Jusoh SA, Tai HK, Siu SWI
    J Comput Aided Mol Des, 2017 Sep;31(9):855-865.
    PMID: 28864946 DOI: 10.1007/s10822-017-0047-0
    [Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
    Matched MeSH terms: Protein Structure, Secondary
  5. Chahil JK, Lye SH, Bagali PG, Alex L
    Mol Biol Rep, 2012 Jul;39(7):7831-8.
    PMID: 22544571 DOI: 10.1007/s11033-012-1626-8
    Familial hypercholesterolemia (FH) is a disease implicated with defects in either, Low density lipoprotein receptor gene (LDLR), Apolipoprotein B-100 gene (APOB), the Proprotein convertase subtilisin/kexin type 9 gene (PCSK9) or other related genes of the lipid metabolism pathway. The general characterization of heterozygous FH is by elevated low-density lipoprotein (LDL) cholesterol and early-onset cardiovascular diseases, while the more severe type, the homozygous FH results in extreme elevated levels of LDL cholesterol and usually death of an affected individual by early twenties. We present here a novel non-synonymous, missense mutation in exon 14 of the LDLR gene in two siblings of the Malay ethnicity discovered during an in-house genetic test. We postulate that their elevated cholesterol is due to this novel mutation and they are positive for homozygous FH. This is the first report of a C711Y mutation in patients with elevated cholesterol in Asia.
    Matched MeSH terms: Protein Structure, Secondary
  6. Chan SL, Ong TC, Gao YF, Tiong YS, Wang de Y, Chew FT, et al.
    J Immunol, 2008 Aug 15;181(4):2586-96.
    PMID: 18684949
    A high incidence of sensitization to Blomia tropicalis, the predominant house dust mite species in tropical regions, is strongly associated with allergic diseases in Singapore, Malaysia, and Brazil. IgE binding to the group 5 allergen, Blo t 5, is found to be the most prevalent among all B. tropicalis allergens. The NMR structure of Blo t 5 determined represents a novel helical bundle structure consisting of three antiparallel alpha-helices. Based on the structure and sequence alignment with other known group 5 dust mite allergens, surface-exposed charged residues have been identified for site-directed mutagenesis and IgE binding assays. Four charged residues, Glu76, Asp81, Glu86, and Glu91 at around the turn region connecting helices alpha2 and alpha3 have been identified to be involved in the IgE binding. Using overlapping peptides, we have confirmed that these charged residues are located on a major putative linear IgE epitope of Blo t 5 from residues 76-91 comprising the sequence ELKRTDLNILERFNYE. Triple and quadruple mutants have been generated and found to exhibit significantly lower IgE binding and reduced responses in skin prick tests. The mutants induced similar PBMC proliferation as the wild-type protein but with reduced Th2:Th1 cytokines ratio. Mass screening on a quadruple mutant showed a 40% reduction in IgE binding in 35 of 42 sera of atopic individuals. Findings in this study further stressed the importance of surface-charged residues on IgE binding and have implications in the cross-reactivity and use of Blo t 5 mutants as a hypoallergen for immunotherapy.
    Matched MeSH terms: Protein Structure, Secondary
  7. Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, et al.
    Microbiol Res, 2015 Jan;170:78-86.
    PMID: 25271126 DOI: 10.1016/j.micres.2014.08.011
    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
    Matched MeSH terms: Protein Structure, Secondary
  8. Chia JY, Tan WS, Ng CL, Hu NJ, Foo HL, Ho KL
    Sci Rep, 2016 08 09;6:31210.
    PMID: 27502833 DOI: 10.1038/srep31210
    DNA methylation in a CpG context can be recognised by methyl-CpG binding protein 2 (MeCP2) via its methyl-CpG binding domain (MBD). An A/T run next to a methyl-CpG maximises the binding of MeCP2 to the methylated DNA. The A/T run characteristics are reported here with an X-ray structure of MBD A140V in complex with methylated DNA. The A/T run geometry was found to be strongly stabilised by a string of conserved water molecules regardless of its flanking nucleotide sequences, DNA methylation and bound MBD. New water molecules were found to stabilise the Rett syndrome-related E137, whose carboxylate group is salt bridged to R133. A structural comparison showed no difference between the wild type and MBD A140V. However, differential scanning calorimetry showed that the melting temperature of A140V constructs in complex with methylated DNA was reduced by ~7 °C, although circular dichroism showed no changes in the secondary structure content for A140V. A band shift analysis demonstrated that the larger fragment of MeCP2 (A140V) containing the transcriptional repression domain (TRD) destabilises the DNA binding. These results suggest that the solution structure of MBD A140V may differ from the wild-type MBD although no changes in the biochemical properties of X-ray A140V were observed.
    Matched MeSH terms: Protein Structure, Secondary
  9. Chia SL, Tan WS, Shaari K, Abdul Rahman N, Yusoff K, Satyanarayanajois SD
    Peptides, 2006 Jun;27(6):1217-25.
    PMID: 16377031
    A peptide with the sequence CTLTTKLYC has previously been identified to inhibit the propagation of Newcastle disease virus (NDV) in embryonated chicken eggs and tissue culture. NDV has been classified into two main groups: the velogenic group, and mesogenic with lentogenic strains as the other group based on its dissociation constants. In this study the peptide, CTLTTKLYC, displayed on the pIII protein of a filamentous M13 phage was synthesized and mutated in order to identify the amino acid residues involved in the interactions with NDV. Mutations of C1 and K6 to A1 and A6 did not affect the binding significantly, but substitution of Y8 with A8 dramatically reduced the interaction. This suggests that Y8 plays an important role in the peptide-virus interaction. The three-dimensional structure of the peptide was determined using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular modeling. The peptide exhibited two possible conformers. One that consists of consecutive beta-turns around T2-L3-T4-T5 and K6-L7-Y8-C9. The other conformer exhibited a beta-hairpin bend type of structure with a bend around L3-T4-T5-K6.
    Matched MeSH terms: Protein Structure, Secondary
  10. Chin SP, Buckle MJ, Chalmers DK, Yuriev E, Doughty SW
    J Mol Graph Model, 2014 Apr;49:91-8.
    PMID: 24631873 DOI: 10.1016/j.jmgm.2014.02.002
    Structure-based virtual screening offers a good opportunity for the discovery of selective M1 muscarinic acetylcholine receptor (mAChR) agonists for the treatment of Alzheimer's disease. However, no 3-D structure of an M1 mAChR is yet available and the homology models that have been previously reported are only able to identify antagonists in virtual screening experiments. In this study, we generated a homology model of the human M1 mAChR, based on the crystal structure of an M3 mAChR as the template. This initial model was modified, using the agonist-bound crystal structure of a β2-adrenergic receptor as a guide, to give two possible activated structures. The T192 side chain was adjusted in both structures and one of the structures also had the whole of transmembrane (TM) 5 rotated and tilted toward the inner channel of the transmembrane region. The binding sites of all three structures were then refined by induced-fit docking (IFD) with acetylcholine. Virtual screening experiments showed that all three refined models could efficiently differentiate agonists from decoy molecules, with the TM5-modified models also giving good agonist/antagonist selectivity. The whole range of agonists and antagonists was observed to bind within the orthosteric site of the structure obtained by IFD refinement alone, implying that it has inactive state character. In contrast, the two TM5-modified structures were unable to accommodate the antagonists, supporting the proposition that they possess activated state character.
    Matched MeSH terms: Protein Structure, Secondary
  11. Choong YS, Lim TS, Chew AL, Aziah I, Ismail A
    J Mol Graph Model, 2011 Apr;29(6):834-42.
    PMID: 21371926 DOI: 10.1016/j.jmgm.2011.01.008
    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test.
    Matched MeSH terms: Protein Structure, Secondary
  12. Cree SL, Chua EW, Crowther J, Dobson RCJ, Kennedy MA
    Biochimie, 2020 Aug 14.
    PMID: 32805304 DOI: 10.1016/j.biochi.2020.07.022
    Next generation DNA sequencing and analysis of amplicons spanning the pharmacogene CYP2D6 suggested that the Nextera transposase used for fragmenting and providing sequencing priming sites displayed a targeting bias. This manifested as dramatically lower sequencing coverage at sites in the amplicon that appeared likely to form G-quadruplex structures. Since secondary DNA structures such as G-quadruplexes are abundant in the human genome, and are known to interact with many other proteins, we further investigated these sites of low coverage. Our investigation revealed that G-quadruplex structures are formed in vitro within the CYP2D6 pharmacogene at these sites, and G-quadruplexes can interact with the hyperactive Tn5 transposase (EZ-Tn5) with high affinity. These findings indicate that secondary DNA structures such as G-quadruplexes may represent preferential transposon integration sites and provide additional evidence for the role of G-quadruplex structures in transposition or viral integration processes.
    Matched MeSH terms: Protein Structure, Secondary
  13. Dehzangi A, Phon-Amnuaisuk S
    Protein Pept Lett, 2011 Feb;18(2):174-85.
    PMID: 21054271
    One of the most important goals in bioinformatics is the ability to predict tertiary structure of a protein from its amino acid sequence. In this paper, new feature groups based on the physical and physicochemical properties of amino acids (size of the amino acids' side chains, predicted secondary structure based on normalized frequency of β-Strands, Turns, and Reverse Turns) are proposed to tackle this task. The proposed features are extracted using a modified feature extraction method adapted from Dubchak et al. To study the effectiveness of the proposed features and the modified feature extraction method, AdaBoost.M1, Multi Layer Perceptron (MLP), and Support Vector Machine (SVM) that have been commonly and successfully applied to the protein folding problem are employed. Our experimental results show that the new feature groups altogether with the modified feature extraction method are capable of enhancing the protein fold prediction accuracy better than the previous works found in the literature.
    Matched MeSH terms: Protein Structure, Secondary
  14. Edbeib MF, Aksoy HM, Kaya Y, Wahab RA, Huyop F
    J Biomol Struct Dyn, 2020 Aug;38(12):3452-3461.
    PMID: 31422756 DOI: 10.1080/07391102.2019.1657498
    Halophiles are extremophilic microorganisms that grow optimally at high salt concentrations by producing a myriad of equally halotolerant enzymes. Structural haloadaptation of these enzymes adept to thriving under high-salt environments, though are not fully understood. Herein, the study attempts an in silico investigation to identify and comprehend the evolutionary structural adaptation of a halotolerant dehalogenase, DehHX (GenBank accession number: KR297065) of the halotolerant Pseudomonas halophila, over its non-halotolerant counterpart, DehMX1 (GenBank accession number KY129692) produced by Pseudomonas aeruginosa. GC content of the halotolerant DehHX DNA sequence was distinctively higher (58.9%) than the non-halotolerant dehalogenases (55% average GC). Its acidic residues, Asp and Glu were 8.27% and 12.06%, respectively, compared to an average 5.5% Asp and 7% Glu, in the latter; but lower contents of basic and hydrophobic residues in the DehHX. The secondary structure of DehHX interestingly revealed a lower incidence of α-helix forming regions (29%) and a higher percentage of coils (57%), compared to 49% and 29% in the non-halotolerant homologues, respectively. Simulation models showed the DehHX is stable under a highly saline environment (25% w/v) by adopting a highly negative-charged surface with a concomitant weakly interacting hydrophobic core. The study thus, established that a halotolerant dehalogenase undergoes notable evolutionary structural changes related to GC content over its non-halotolerant counterpart, in order to adapt and thrive under highly saline environments.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Protein Structure, Secondary
  15. Elengoe A, Naser MA, Hamdan S
    Int J Genomics, 2015;2015:391293.
    PMID: 26098630 DOI: 10.1155/2015/391293
    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were -0.44 Kcal/mol and -9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.
    Matched MeSH terms: Protein Structure, Secondary
  16. Feng Z, Hu X, Jiang Z, Song H, Ashraf MA
    Saudi J Biol Sci, 2016 Mar;23(2):189-97.
    PMID: 26980999 DOI: 10.1016/j.sjbs.2015.10.008
    The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.
    Matched MeSH terms: Protein Structure, Secondary
  17. Firoz A, Malik A, Singh SK, Jha V, Ali A
    Gene, 2015 Dec 15;574(2):235-46.
    PMID: 26260015 DOI: 10.1016/j.gene.2015.08.012
    Glycogenes regulate a large number of biological processes such as cancer and development. In this work, we created an interaction network of 923 glycogenes to detect potential hubs from different mouse tissues using RNA-Seq data. DAVID functional cluster analysis revealed enrichment of immune response, glycoprotein and cholesterol metabolic processes. We also explored nsSNPs that may modify the expression and function of identified hubs using computational methods. We observe that the number of nsSNPs predicted by any two methods to affect protein function is 4, 7 and 2 for FLT1, NID2 and TNFRSF1B. Residues in the native and mutant proteins were analyzed for solvent accessibility and secondary structure change. Analysis of hubs can help in determining their degree of conservation and understanding their functions in biological processes. The nsSNPs proposed in this work may be further targeted through experimental methods for understanding structural and functional relationships of hub mutants.
    Matched MeSH terms: Protein Structure, Secondary
  18. Fotoohifiroozabadi S, Mohamad MS, Deris S
    J Bioinform Comput Biol, 2017 Apr;15(2):1750004.
    PMID: 28274174 DOI: 10.1142/S0219720017500044
    Protein structure alignment and comparisons that are based on an alphabetical demonstration of protein structure are more simple to run with faster evaluation processes; thus, their accuracy is not as reliable as three-dimension (3D)-based tools. As a 1D method candidate, TS-AMIR used the alphabetic demonstration of secondary-structure elements (SSE) of proteins and compared the assigned letters to each SSE using the [Formula: see text]-gram method. Although the results were comparable to those obtained via geometrical methods, the SSE length and accuracy of adjacency between SSEs were not considered in the comparison process. Therefore, to obtain further information on accuracy of adjacency between SSE vectors, the new approach of assigning text to vectors was adopted according to the spherical coordinate system in the present study. Moreover, dynamic programming was applied in order to account for the length of SSE vectors. Five common datasets were selected for method evaluation. The first three datasets were small, but difficult to align, and the remaining two datasets were used to compare the capability of the proposed method with that of other methods on a large protein dataset. The results showed that the proposed method, as a text-based alignment approach, obtained results comparable to both 1D and 3D methods. It outperformed 1D methods in terms of accuracy and 3D methods in terms of runtime.
    Matched MeSH terms: Protein Structure, Secondary
  19. Halim AA, Feroz SR, Tayyab S
    Biosci Biotechnol Biochem, 2013;77(1):87-96.
    PMID: 23291750
    Treatment of Bacillus licheniformis α-amylase (BLA) with guanidine hydrochloride (GdnHCl) produced both denatured and aggregated forms of the enzyme as studied by circular dichroism, fluorescence, UV difference spectroscopy, size exclusion chromatography (SEC), and enzymatic activity. The presence of CaCl(2) in the incubation mixture produced significant recovery in spectral signals, being complete in presence of 10 mM CaCl(2), as well as in enzymatic activity, which is indicative of protein stabilization. However, the SEC results obtained with GdnHCl-denatured BLA both in the absence and the presence of 10 mM CaCl(2) suggested significant aggregation of the protein in the absence of CaCl(2) and disaggregation in its presence. Although partial structural stabilization with significant retention of enzymatic activity was observed in the presence of calcium, it was far from the native state, as reflected by spectral probes. Hence, spectral results as to BLA stabilization should be treated with caution in the presence of aggregation.
    Matched MeSH terms: Protein Structure, Secondary
  20. Higashi SL, Rozi N, Hanifah SA, Ikeda M
    Int J Mol Sci, 2020 Dec 12;21(24).
    PMID: 33322664 DOI: 10.3390/ijms21249458
    Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
    Matched MeSH terms: Protein Structure, Secondary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links