Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Su KY, Balasubramaniam VRMT
    Front Microbiol, 2019;10:2715.
    PMID: 31824472 DOI: 10.3389/fmicb.2019.02715
    The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  2. Lim YM, Eng WL, Chan HK
    Asian Pac J Cancer Prev, 2017 07 27;18(7):1925-1930.
    PMID: 28749622
    Background: In Malaysia, the treatment for chronic myeloid leukemia (CML) has long been delivered under the
    Malaysian Patient Assistance Program (MYPAP), but research on identifying factors contributing to non-adherence to
    tyrosine kinase inhibitors (TKIs) is still limited. The current study explored understanding and challenges of Malaysian
    CML patients in taking imatinib and nilotinib. Methods: Semi-structured, face-to-face interviews were conducted
    with 13 CML patients receiving treatment at a public tertiary care center, and were analyzed using the content analysis
    approach. Results: The patients generally demonstrated inadequate knowledge, particularly of the natural history and
    staging of CML, the function of TKIs, and the methods used for monitoring the effectiveness of treatment. A number of
    them also had experiences of withholding, skipping or altering the treatment, mainly due to the life-disturbing adverse
    drug effects (ADRs), forgetfulness, and religious and social issues. Besides, most of them were found having limited
    skills in managing the ADRs, and not using prompts as reminders to take the medications. Furthermore, even though
    nilotinib was generally perceived as better tolerated as compared with imatinib, the inconvenience caused by the need
    to take it twice daily and on an empty stomach was constantly highlighted by the patients. Conclusion: While TKIs
    are widely used for CML treatment in Malaysia, the findings have revealed a lack of patient education and awareness,
    which warrants an integrated plan to reinforce medication adherence.
    Matched MeSH terms: Protein-Tyrosine Kinases
  3. Kuan JW, Melaine Michael S
    Med J Malaysia, 2018 04;73(2):78-85.
    PMID: 29703870 MyJurnal
    OBJECTIVES: There are very few published chronic myeloid leukaemia (CML) epidemiology studies in South-East Asia and no representative from Malaysia.

    METHODS: This is a cross-sectional study of adult CML patients (citizen) in a single but representative centre in southern Sarawak.

    RESULTS: Total 79 patients (Malay 39%, Chinese 30.4%, Iban 17.7%, Bidayuh 12.7%) were identified from the databases. Median age at diagnosis was younger, 40, compared to developed countries due to population structure. M:F ratio was higher, 2.6:1 compared to other countries 1.3-1.7:1. Majority presented at chronic phase (89.5%), low/intermediate risk score (80%) and started imatinib (96%) as first line tyrosine kinase inhibitor (TKI), which 40% of them switched to other TKI due to intolerance (17%) and failure (including disease progression)/not achieving major molecular response (83%). Quantitative polymerase chain reaction (qPCR) assessment after three months of TKI treatment had higher positive predictive value to predict Imatinib failure, 75%, than qPCR assessment after six months of TKI treatment, 58%. Presenting phase, symptoms, signs and laboratory data were like most countries. Estimated prevalence and incidence of CML in southern Sarawak was 69.2/1,000,000 population at the Year 2016 (similar to most developing countries) and 8.0/1,000,000 population per year at the Year 2011-2016 (similar to most countries), respectively. The incidence increased with age and was lowest among Iban, 12.8 and highest among Chinese, 19.5, which was 4x higher than Chinese in China. The prevalence of different BCR-ABL1 transcript type was like other Asia countries CONCLUSION: Significant epidemiological differences on M:F ratio and ethnic groups compared to other countries warrant further study.

    Matched MeSH terms: Protein-Tyrosine Kinases
  4. Yahya TSANT, Azmi NC, Yee FS, Chyang PJ, Ting NS, Seng TC
    Int J Med Mushrooms, 2024;26(3):55-66.
    PMID: 38505903 DOI: 10.1615/IntJMedMushrooms.2024052325
    Leukemia can be a result of genetic changes associated with protein tyrosine kinase activity such as in MPL W515L and BCR/ABL genes. However, the current conventional treatment of leukemia produces severe side effects that urge the approach to use natural products. A medicinal mushroom, Lignosus rhinocerus shows potential as an anti-cancer treatment. To investigate the efficacy and mechanism of action of the L. rhinocerus cultivar (TM02®) extract on leukemogenic tyrosine kinase cell lines, a cold-water extract (CWE) was produced by using TM02® sclerotia powder at 4°C. The carbohydrate and protein contents were found to be 77.24% and 1.75% respectively. In comparison to the normal Ba/F3 cell, the CWE TM02® shows significant effects on exhibiting proliferation of Ba/F3 expressed MPL W515L and BCR/ABL, possibly due to the presence of phenolic compounds and antioxidant properties of TM02®, which contribute to act on various signaling pathways, and the reported apoptotic activity of CWE TM02®. In contrast, CWE TM02® significantly exhibited high scavenging activity of both Ba/F3 expressed MPL W515L and BCR/ABL. At concentrations of 125 μg/mL and 500 μg/mL of CWE TM02® decreased 49.5% and 67.5% of cell migration activity of Ba/F3 expressed MPL W515L and BCR/ABL respectively. Therefore, we postulate that CWE TM02® has the capability to mediate the migration route of the leukemogenic tyrosine kinase cell lines.
    Matched MeSH terms: Protein-Tyrosine Kinases
  5. Mphahlele MJ, Paumo HK, Choong YS
    Pharmaceuticals (Basel), 2017 Nov 20;10(4).
    PMID: 29156606 DOI: 10.3390/ph10040087
    Series of the 2-unsubstituted and 2-(4-chlorophenyl)-substituted 4-anilino-6-bromoquinazolines and their 6-(4-fluorophenyl)-substituted derivatives were evaluated for in vitro cytotoxicity against MCF-7 and HeLa cells. The 2-unsubstituted 4-anilino-6-bromoquinazolines lacked activity, whereas most of their 2-(4-chlorophenyl) substituted derivatives were found to exhibit significant cytotoxicity and selectivity against HeLa cells. Replacement of bromine with 4-fluorophenyl group for the 2-unsubstituted 4-anilinoquinazolines resulted in superior activity against HeLa cells compared to Gefitinib. The presence of a 4-fluorophenyl group in the 2-(4-chlorophenyl) substituted derivatives led to increased cytotoxicity against HeLa cells, except for the 3-chloroanilino derivative. The most active compounds, namely, 3g, 3l, and 4l, were found to exhibit a moderate to significant inhibitory effect against epidermal growth factor receptor tyrosine kinase (EGFR-TK). The EGFR molecular docking model suggested that these compounds are nicely bound to the region of EGFR.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  6. Karim ME, Shetty J, Islam RA, Kaiser A, Bakhtiar A, Chowdhury EH
    Pharmaceutics, 2019 Feb 20;11(2).
    PMID: 30791612 DOI: 10.3390/pharmaceutics11020089
    Inorganic nanoparticles hold great potential in the area of precision medicine, particularly for treating cancer owing to their unique physicochemical properties, biocompatibility and improved pharmacokinetics properties compared to their organic counterparts. Here we introduce strontium sulfite nanoparticles as new pH-responsive inorganic nanocarriers for efficient transport of siRNAs into breast cancer cells. We employed the simplest nanoprecipitation method to generate the strontium sulfite nanoparticles (SSNs) and demonstrated the dramatic roles of NaCl and d-glucose in particle growth stabilization in order to produce even smaller nanosize particles (Na-Glc-SSN) with high affinity towards negatively charged siRNA, enabling it to efficiently enter the cancer cells. Moreover, the nanoparticles were found to be degraded with a small drop in pH, suggesting their potential capability to undergo rapid dissolution at endosomal pH so as to release the payload. While these particles were found to be nontoxic to the cells, they showed higher potency in facilitating cancer cell death through intracellular delivery and release of oncogene-specific siRNAs targeting ros1 and egfr1 mRNA transcripts, than the strontium sulfite particles prepared in absence of NaCl and d-glucose, as confirmed by growth inhibition assay. The mouse plasma binding analysis by Q-TOF LC-MS/MS demonstrated less protein binding to smaller particles of Na-Glc-SSNs. The biodistribution studies of the particles after 4 h of treatment showed Na-Glc-SSNs had less off-target distribution than SSNs, and after 24 h, all siRNAs were cleared from all major organs except the tumors. ROS1 siRNA with its potential therapeutic role in treating 4T1-induced breast tumor was selected for subsequent in vivo tumor regression study, revealing that ROS1 siRNA-loaded SSNs exerted more significant anti-tumor effects than Na-Glc-SSNs carrying the same siRNA following intravenous administration, without any systemic toxicity. Thus, strontium sulfite emerged as a powerful siRNA delivery tool with potential applications in cancer gene therapy.
    Matched MeSH terms: Protein-Tyrosine Kinases
  7. Che Mat MF, Abdul Murad NA, Ibrahim K, Mohd Mokhtar N, Wan Ngah WZ, Harun R, et al.
    Int J Oncol, 2016 Dec;49(6):2359-2366.
    PMID: 27840905 DOI: 10.3892/ijo.2016.3755
    Glioblastoma multiforme (GBM) is an aggressive brain tumor and most patients have poor prognosis. Despite many advances in research, there has been no significant improvement in the patient survival rate. New molecular therapies are being studied and RNA interference (RNAi) therapy is one of the promising approaches to improve prognosis and increase survival in patients with GBM. We performed a meta‑analysis of five different microarray datasets and identified 460 significantly upregulated genes in GBM. Loss‑of‑function screening of these upregulated genes using LN18 cells was performed to identify the significant target genes for glioma. Further investigations were performed using siRNA in LN18 cells and various functional assays were carried out on the selected candidate gene to understand further its role in GBM. We identified PROS1 as a candidate gene for GBM from the meta‑analysis and RNAi screening. Knockdown of PROS1 in LN18 cells significantly induced apoptosis compared to siPROS1‑untreated cells (p<0.05). Migration in cells treated with siPROS1 was reduced significantly (p<0.05) and this was confirmed with wound-healing assay. PROS1 knockdown showed substantial reduction in cell invasion up to 82% (p<0.01). In addition, inhibition of PROS1 leads to decrease in cellular proliferation by 18%. Knockdown of PROS1 in LN18 cells caused activation of both of the extrinsic and intrinsic apoptotic pathways. It caused major upregulation of FasL which is important for death receptor signaling activation and also downregulation of GAS6 and other members of TAM family of receptors. PROS1 may play an important role in the development of GBM through cellular proliferation, migration and invasion as well as apoptosis. Targeting PROS1 in GBM could be a novel therapeutic strategy in GBM treatment.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases/biosynthesis
  8. Arafath MA, Al-Suede FSR, Adam F, Al-Juaid S, Khadeer Ahamed MB, Majid AMSA
    Drug Dev Res, 2019 09;80(6):778-790.
    PMID: 31215682 DOI: 10.1002/ddr.21559
    The bidentate N-cyclohexyl-2-(3-hydroxy-4-methoxybenzylidene)hydrazine-1-carbothioamide Schiff base ligand (HL) was coordinated to divalent nickel, palladium and platinum ions to form square planar complexes. The nickel and palladium complexes, [NiL2 ], [PdL2 ] form square planar complexes with 2:1 ligand to metal ratio. The platinum complex, [PtL(dmso)Cl] formed a square planar complex with 1:1 ligand to metal ratio. Platinum undergoes in situ reaction with DMSO before complexing with the ligand in solution. The cytotoxicity of HL, [NiL2 ], [PdL2 ], and [PtL(dmso)Cl] were evaluated against human colon cancer cell line (HCT-116), human cervical cancer (Hela) cell line, melanoma (B16F10) cells, and human normal endothelial cell lines (Eahy926) by MTT assay. The [NiL2 ] complex displayed selective cytotoxic effect against the HCT 116 cancer cell line with IC50 of 7.9 ± 0.2 μM. However, HL, [PdL2 ], and [PtL(dmso)Cl] only exhibited moderate cytotoxic activity with IC50 = 75.9 ± 2.4, 100.0 ± 1.8, and 101.0 ± 3.6 μM, respectively. The potent cytotoxicity of [NiL2 ] was characterized using Hoechst and Rhodamine assays. The nickel complex, [NiL2 ], caused remarkable nuclear condensation and reduction in mitochondrial membrane potential. In addition, molecular docking studies confirms that [NiL2 ] possesses significant binding efficiency with Tyrosine kinase. Altogether, the results revealed that [NiL2 ] exhibits cytotoxicity against the cancer cells via Tyrosine kinase-induced proapoptosis pathway. This study demonstrates that the [NiL2 ] complex could be a promising therapeutic agent against colorectal carcinoma.
    Matched MeSH terms: Protein-Tyrosine Kinases/chemistry
  9. Abbaspour Babaei M, Kamalidehghan B, Saleem M, Huri HZ, Ahmadipour F
    Drug Des Devel Ther, 2016;10:2443-59.
    PMID: 27536065 DOI: 10.2147/DDDT.S89114
    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases/antagonists & inhibitors*; Receptor Protein-Tyrosine Kinases/metabolism*; Receptor Protein-Tyrosine Kinases/chemistry
  10. Prasher P, Sharma M, Chan Y, Singh SK, Anand K, Dureja H, et al.
    Curr Med Chem, 2023;30(13):1529-1567.
    PMID: 34766883 DOI: 10.2174/0929867328666211111161811
    Protein kinases modulate the structure and function of proteins by adding phosphate groups to threonine, tyrosine, and serine residues. The phosphorylation process mediated by the kinases regulates several physiological processes, while their overexpression results in the development of chronic diseases, including cancer. Targeting of receptor tyrosine kinase pathways results in the inhibition of angiogenesis and cell proliferation that validates kinases as a key target in the management of aggressive cancers. As such, the identification of protein kinase inhibitors revolutionized the contemporary anticancer therapy by inducing a paradigm shift in the management of disease pathogenesis. Contemporary drug design programs focus on a broad range of kinase targets for the development of novel pharmacophores to manage the overexpression of kinases and their pathophysiology in cancer pathogenesis. In this review, we present the emerging trends in the development of rationally designed molecular inhibitors of kinases over the last five years (2016-2021) and their incipient role in the development of impending anticancer pharmaceuticals.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  11. Al-Jamal HAN, Johan MF, Mat Jusoh SA, Ismail I, Wan Taib WR
    Asian Pac J Cancer Prev, 2018 Jun 25;19(6):1585-1590.
    PMID: 29936783
    Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development and
    progression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways.
    Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression of
    PRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/
    ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treated
    with imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib were
    treated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively.
    Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylation
    status of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher in
    K562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreased
    in K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showed
    higher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity to
    imatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.
    Matched MeSH terms: Protein-Tyrosine Kinases
  12. Yaakup H, Sagap I, Fadilah SA
    Singapore Med J, 2008 Oct;49(10):e289-92.
    PMID: 18946602
    Primary oesophageal lymphoma is a very rare entity, with fewer than 30 reported cases worldwide. It represents an important cause of dysphagia. Most of the oesophageal lymphomas are diffuse large B-cell type, with only one reported case of anaplastic large cell lymphoma (ALCL) of T-cell phenotype. Primary oesophageal lymphomas that are not associated with an immunocompromised state tend to affect elderly patients. We describe the first case of primary oesophageal Ki (CD30)-positive ALK+ALCL of T-cell phenotype in a 34-year-old immunocompetent woman, who presented with a two-year history of dysphagia. She was treated with chemotherapy and endoscopic oesophageal dilations and stenting, resulting in complete remission of the lymphoma and resolution of the dysphagia. She then underwent autologous peripheral blood haematopoietic stem cell transplantation and remained disease-free two years after the diagnosis.
    Matched MeSH terms: Protein-Tyrosine Kinases/biosynthesis*; Receptor Protein-Tyrosine Kinases
  13. Liew K, Yu GQS, Wei Pua LJ, Wong LZ, Tham SY, Hii LW, et al.
    Cancer Lett, 2021 Apr 28;504:81-90.
    PMID: 33587980 DOI: 10.1016/j.canlet.2021.02.006
    Despite recent in advances in the management of nasopharyngeal carcinoma (NPC), development of targeted therapy remains challenging particularly in patients with recurrent or metastatic disease. To search for clinically relevant targets for the treatment of NPC, we carried out parallel genome-wide functional screens to identified essential genes that are required for NPC cells proliferation and cisplatin resistance. We identified lymphocyte-specific protein tyrosine kinase (LCK) as a key vulnerability of both proliferation and cisplatin resistance. Depletion of endogenous LCK or treatment of cells with LCK inhibitor induced tumor-specific cell death and synergized cisplatin sensitivity in EBV-positive C666-1 and EBV-negative SUNE1 cells. Further analyses demonstrated that LCK is regulating the proliferation and cisplatin resistance through activation of signal transducer and activator of transcription 5 (STAT5). Taken together, our study provides a molecular basis for targeting LCK and STAT5 signaling as potential druggable targets for the management of NPC.
    Matched MeSH terms: Protein-Tyrosine Kinases/genetics*
  14. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al.
    N Engl J Med, 2018 01 11;378(2):113-125.
    PMID: 29151359 DOI: 10.1056/NEJMoa1713137
    BACKGROUND: Osimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC).

    METHODS: In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival.

    RESULTS: The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%).

    CONCLUSIONS: Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).

    Matched MeSH terms: Protein-Tyrosine Kinases/antagonists & inhibitors
  15. Inn FX, Ahmed N, Hing EY, Jasman MH
    Urol Ann, 2017 5 10;9(2):194-196.
    PMID: 28479777 DOI: 10.4103/0974-7796.204178
    Tyrosine kinase inhibitor (TKI) and its side effects are well known. However, these are mainly descriptive, with pictorial data lacking. Here, in we report a case of metastatic renal cell carcinoma, treated with TKI, with classic side effects; supplemented with images that demonstrate the adverse effects of the drug. In addition, we discuss and demonstrate the computed tomography changes.
    Matched MeSH terms: Protein-Tyrosine Kinases
  16. Sosroseno W, Barid I, Herminajeng E, Susilowati H
    Oral Microbiol. Immunol., 2002 Apr;17(2):72-8.
    PMID: 11929552
    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could stimulate a murine macrophage cell line (RAW264.7 cells) to produce nitric oxide (NO). The cells were treated with LPS-A. actinomycetemcomitans or Escherichia coli LPS (LPS-Ec) for 24 h. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B and cytokines (IFN-gamma, TNF-alpha, IL-4 and IL-12) on the production of NO were also determined. The role of protein tyrosine kinase, protein kinase C and microtubulin organization on NO production were assessed by incubating RAW264.7 cells with genistein, bisindolylmaleide and colchicine prior to LPS-A. actinomycetemcomitans stimulation, respectively. NO levels from the culture supernatants were determined by the Griess reaction. The results showed that LPS-A. actinomycetemcomitans stimulated NO production by RAW264.7 cells in a dose-dependent manner, but was slightly less potent than LPS-Ec. NMMA and polymyxin B blocked the production of NO. IFN-gamma and IL-12 potentiated but IL-4 depressed NO production by LPS-A. actinomycetemcomitans-stimulated RAW264.7 cells. TNF-alpha had no effects on NO production. Genistein and bisindolylmalemaide, but not colchicine, reduced the production of NO in a dose-dependent mechanism. The results of the present study suggest that A. actinomycetemcomitans LPS, via the activation of protein tyrosine kinase and protein kinase C and the regulatory control of cytokines, stimulates NO production by murine macrophages.
    Matched MeSH terms: Protein-Tyrosine Kinases/antagonists & inhibitors
  17. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2011 Oct;17(5):246-51.
    PMID: 21736946 DOI: 10.1016/j.anaerobe.2011.06.006
    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion.
    Matched MeSH terms: Protein-Tyrosine Kinases/metabolism
  18. Issac PK, Guru A, Chandrakumar SS, Lite C, Saraswathi NT, Arasu MV, et al.
    Mol Biol Rep, 2020 Sep;47(9):6727-6740.
    PMID: 32809102 DOI: 10.1007/s11033-020-05728-5
    Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.
    Matched MeSH terms: Protein-Tyrosine Kinases/genetics; Protein-Tyrosine Kinases/metabolism
  19. Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC
    Cell Signal, 2017 06;34:66-75.
    PMID: 28302566 DOI: 10.1016/j.cellsig.2017.03.002
    S1P is a small bioactive lipid which exerts its effects following binding to a family of five G protein-coupled receptors, known as S1P1-5. Following receptor activation, multiple signalling cascades are activated, allowing S1P to regulate a range of cellular processes, such as proliferation, apoptosis, migration and angiogenesis. There is strong evidence implicating the involvement of S1P receptors (S1PRs) in cancer progression and the oncogenic effects of S1P can result from alterations in the expression of one or more of the S1PRs and/or the enzymes that regulate the levels of S1P. However, cooperativity between the individual S1PRs, functional interactions with receptor tyrosine kinases and the sub-cellular localisation of the S1PRs within tumour cells also appear to play a role in mediating the effects of S1PR signalling during carcinogenesis. Here we review what is known regarding the role of individual S1PRs in cancer and discuss the recent evidence to suggest cross-talk between the S1PRs and other cellular signalling pathways in cancer. We will also discuss the therapeutic potential of targeting the S1PRs and their downstream signalling pathways for the treatment of cancer.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases/metabolism
  20. Awang-Kechik NH, Ahmad R, Doustjalali SR, Sabet NS, Abd-Rahman AN
    J Clin Exp Dent, 2019 Mar;11(3):e269-e274.
    PMID: 31001398 DOI: 10.4317/jced.55546
    Background: The biological responses involved during retention phase have been studied for many years but little is known about the effect of saliva proteome during retention phase of post-orthodontic treatment. This study aims to identify the protein profiles during retention phase in relation to biological processes involved by Liquid Chromatography Mass Spectrometry (LC-MS) approach.

    Material and Methods: A total of 5 ml of unstimulated saliva was collected from each subject (10 non-orthodontic patients and 15 post-orthodontic patients with 6-months retention phase). Samples were then subjected to LC-MS analysis. The expressed proteins were identified and compared between groups. Incisor irregularity for both maxilla and mandible were determined with Little's Irregularity Index at 6-months retention phase.

    Results: 146 proteins and 135 proteins were expressed in control and 6-months retention phase group respectively. 15 proteins were identified to be co-expressed between groups. Immune system process was only detected in 6-months retention phase group. Detected protein in immune system process was identified as Tyrosine-protein kinase Tec. Statistical significant of incisor irregularity was only found in mandible at 6-months retention phase.

    Conclusions: Our study suggests that immune system process protein which is Tyrosine-protein kinase Tec could be used as biomarker for prediction of stability during retention phase of post-orthodontic treatment. Key words:Orthodontics, proteomics, retention, LC-MS, saliva.

    Matched MeSH terms: Protein-Tyrosine Kinases
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links