Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Alhelli AM, Mohammed NK, Khalil ES, Hussin ASM
    AMB Express, 2021 Mar 22;11(1):45.
    PMID: 33751265 DOI: 10.1186/s13568-021-01205-9
    Cheddar cheese proteolysis were accelerated employing Penicillium candidum PCA1/TT031 protease into cheese curd. In the present study, several of the significant factors such as protease purification factor (PF), protease concentration and ripening time were optimized via the response surface methodology (RSM). The ideal accelerated Cheddar cheese environment consisted of 3.12 PF, 0.01% (v/v) protease concentration and 0.6/3 months ripening time at 10 °C. The RSM models was verified to be the most proper methodology for the maintain of chosen Cheddar cheese. Under this experimental environment, the pH, acid degree value (ADV), moisture, water activity (aw), soluble nitrogen (SN)%, fat and overall acceptability were found to be 5.4, 6.6, 35%, 0.9348, 18.8%, 34% and 13.6, respectively of ideal Cheddar cheese. Furthermore, the predicted and experimental results were in significant agreement, which confirmed the validity and reliability of the suggested method. In spite of the difference between the ideal and commercial Cheddar cheese in the concentration of some of amino acids and free fatty acids, the sensory evaluation did not show any significant difference in aroma profile between them.
    Matched MeSH terms: Proteolysis
  2. Lee PY, Low TY, Jamal R
    Adv Clin Chem, 2018 12 27;88:67-89.
    PMID: 30612607 DOI: 10.1016/bs.acc.2018.10.004
    The life span of cancer patients can be prolonged with appropriate therapies if detected early. Mass screening for early detection of cancer, however, requires sensitive and specific biomarkers obtainable from body fluids such as blood or urine. To date, most biomarker discovery programs focus on the proteome rather than the endogenous peptidome. It has been long-established that tumor cells and stromal cells produce tumor resident proteases (TRPs) to remodel the surrounding tumor microenvironment in support of tumor progression. In fact, proteolytic products of TRPs have been shown to correlate with malignant behavior. Being of low molecular weight, these unique peptides can pass through the endothelial barrier of the vasculature into the bloodstream. As such, the cancer peptidome has increasingly become a focus for biomarker discovery. In this review, we discuss on the various aspects of the peptidome in cancer biomarker research.
    Matched MeSH terms: Proteolysis
  3. Darah I, Nur-Diyana A, Nurul-Husna S, Jain K, Lim SH
    Appl Biochem Biotechnol, 2013 Dec;171(7):1900-10.
    PMID: 24013862 DOI: 10.1007/s12010-013-0496-4
    Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.
    Matched MeSH terms: Proteolysis*
  4. Bhowmick S, Chakravarty C, Sellathamby S, Lal SK
    Arch Virol, 2017 Apr;162(4):919-929.
    PMID: 27942972 DOI: 10.1007/s00705-016-3153-8
    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
    Matched MeSH terms: Proteolysis
  5. Bordbar S, Ebrahimpour A, Abdul Hamid A, Abdul Manap MY, Anwar F, Saari N
    Biomed Res Int, 2013;2013:849529.
    PMID: 23586061 DOI: 10.1155/2013/849529
    The stone fish (Actinopyga lecanora) ethanolic and methanolic tissue extracts were investigated for total phenolic contents (TPCs) as well as antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Both extracts showed low amount of phenolics (20.33 to 17.03 mg of gallic acid equivalents/100 g dried sample) and moderate antioxidant activity (39% to 34% DPPH(•) radical scavenging activity and 23.95 to 22.30 mmol/100 mL FeSO4 FRAP value). Enzymatic proteolysis was carried out in order to improve the antioxidant activity using six commercially available proteases under their optimum conditions. The results revealed that the highest increase in antioxidant activity up to 85% was obtained for papain-generated proteolysate, followed by alcalase (77%), trypsin (75%), pepsin (68%), bromelain (68%), and flavourzyme (50%) as measured by DPPH(•) radical scavenging activity, whilst for the FRAP value, the highest increase in the antioxidant activity up to 39.2 mmol/100 mL FeSO4 was obtained for alcalase-generated proteolysate, followed by papain (29.5 mmol/100 mL FeSO4), trypsin (23.2 mmol/100 mL FeSO4), flavourzyme (24.7 mmol/100 mL FeSO4), bromelain (22.9 mmol/100 mL FeSO4), and pepsin (20.8 mmol/100 mL FeSO4). It is obvious that proteolysis of stone fish tissue by proteolytic enzymes can considerably enhance its antioxidant activity.
    Matched MeSH terms: Proteolysis*
  6. Zhang Y, Lee S, Xu W
    Biochem Biophys Res Commun, 2020 04 16;524(4):1018-1024.
    PMID: 32063363 DOI: 10.1016/j.bbrc.2020.02.021
    Pten deletion in the hematopoietic stem cells (HSC) causes a myeloproliferative disorder, which may subsequently develop into a T-cell acute lymphoblastic leukemia (T-ALL). β-catenin expression was dramatically increased in the c-KitmidCD3+Lin- leukemia stem cells (LSC) and was critical for T-ALL development. Therefore, the inactivation of β-catenin in LSC may have a potential to eliminate the LSC. In this study, we investigated the mechanism of enhancement of the β-catenin expression and subsequently used a drug to inactivate β-catenin expression in T-ALL. Western blot (WB) analysis revealed an increased level of β-catenin in the leukemic cells, but not in the pre-leukemic cells. Furthermore, the WB analysis of the thymic cells from different stages of leukemia development showed that increased expression of β-catenin was not via the pS9-GSK3β signaling, but was dependent on the pT308-Akt activation. Miltefosine (Hexadecylphosphocholine) is the first oral anti-Leishmania drug, which is a phospholipid agent and has been shown to inhibit the PI3K/Akt activity. Treatment of the PtenΔ/Δ leukemic mice with Miltefosine for different durations demonstrated that the pT308-Akt and the β-catenin expressions were inhibited in the leukemia blast cells. Miltefosine treatment also suppressed the TGFβ1/Smad3 signaling pathway. Analysis of TGFβ1 in the sorted subpopulations of the blast cells showed that TGFβ1 was secreted by the CD3+CD4- subpopulation and may exert effects on the subpopulations of both CD3+CD4+ and CD3+CD4- leukemia blast cells. When a TGFβR1 inhibitor, SB431542 was injected into the PtenΔ/Δ leukemic mice, the Smad3 and β-catenin expressions were down-regulated. On the basis of the results, we conclude that Miltefosine can suppress leukemia by degrading β-catenin through repression of the pT308-Akt and TGFβ1/Smad3 signaling pathways. This study demonstrates a possibility to inhibit Pten loss-associated leukemia genesis via targeting Akt and Smad3.
    Matched MeSH terms: Proteolysis/drug effects*
  7. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM
    Biotechnol Adv, 2014 12 12;33(1):80-116.
    PMID: 25499177 DOI: 10.1016/j.biotechadv.2014.12.003
    The growing momentum of several common life-style diseases such as myocardial infarction, cardiovascular disorders, stroke, hypertension, diabetes, and atherosclerosis has become a serious global concern. Recent developments in the field of proteomics offering promising solutions to solving such health problems stimulates the uses of biopeptides as one of the therapeutic agents to alleviate disease-related risk factors. Functional peptides are typically produced from protein via enzymatic hydrolysis under in vitro or in vivo conditions using different kinds of proteolytic enzymes. An array of biological activities, including antioxidative, antihypertensive, antidiabetic and immunomodulating has been ascribed to different types of biopeptides derived from various food sources. In fact, biopeptides are nutritionally and functionally important for regulating some physiological functions in the body; however, these are yet to be extensively addressed with regard to their production through advance strategies, mechanisms of action and multiple biological functionalities. This review mainly focuses on recent biotechnological advances that are being made in the field of production in addition to covering the mode of action and biological activities, medicinal health functions and therapeutic applications of biopeptides. State-of-the-art strategies that can ameliorate the efficacy, bioavailability, and functionality of biopeptides along with their future prospects are likewise discussed.
    Matched MeSH terms: Proteolysis
  8. Shori AB, Ming KS, Baba AS
    Biotechnol Appl Biochem, 2021 Apr;68(2):221-229.
    PMID: 32249982 DOI: 10.1002/bab.1914
    Plain and Lycium barbarum yogurt were made in the presence and absence of fish collagen. Yogurt samples were analyzed for acidification, milk protein proteolysis, angiotensin I-converting enzyme (ACE) inhibitory activity, and sensory evaluation during refrigerated storage for up to 21 days. The o-phthaldialdehyde peptides amount of L. barbarum yogurt both in the presence and absence of fish collagen were significantly increased during 14 days of storage. SDS-PAGE showed improvement in whey proteins degradation of L. barbarum yogurt with/without fish collagen after 3 weeks of storage. L. barbarum yogurt in absence of fish collagen was acting as a great ACE inhibitor reached up to 85% on day 7 of storage. The incorporation of L. barbarum and/or fish collagen affected to a small extent the overall sensory characteristics of yogurt. Yogurt supplemented with L. barbarum and/or fish collagen may lead to the improvement in the production and formulation of yogurt differing in their anti-ACE activity.
    Matched MeSH terms: Proteolysis*
  9. Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, et al.
    Cancer Rep (Hoboken), 2021 08;4(4):e1369.
    PMID: 33822486 DOI: 10.1002/cnr2.1369
    BACKGROUND: Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer.

    RECENT FINDINGS: Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis.

    CONCLUSION: The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.

    Matched MeSH terms: Proteolysis
  10. Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H
    Cancer Sci, 2013 Nov;104(11):1461-7.
    PMID: 23910095 DOI: 10.1111/cas.12246
    Dysregulation of p27(Kip1) due to proteolysis that involves the ubiquitin ligase (SCF) complex with S-phase kinase-associated protein 2 (Skp2) as the substrate-recognition component (SCF(Skp2)) frequently results in tumorigenesis. In this report, we developed a high-throughput screening system to identify small-molecule inhibitors of p27(Kip1) degradation. This system was established by tagging Skp2 with fluorescent monomeric Azami Green (mAG) and CDK subunit 1 (Cks1) (mAGSkp2-Cks1) to bind to p27(Kip1) phosphopeptides. We identified two compounds that inhibited the interaction between mAGSkp2-Cks1 and p27(Kip1): linichlorin A and gentian violet. Further studies have shown that the compounds inhibit the ubiquitination of p27(Kip1) in vitro as well as p27(Kip1) degradation in HeLa cells. Notably, both compounds exhibited preferential antiproliferative activity against HeLa and tsFT210 cells compared with NIH3T3 cells and delayed the G1 phase progression in tsFT210 cells. Our approach indicates a potential strategy for restoring p27(Kip1) levels in human cancers.
    Matched MeSH terms: Proteolysis/drug effects
  11. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cell Prolif, 2013 Apr;46(2):203-13.
    PMID: 23510475 DOI: 10.1111/cpr.12014
    OBJECTIVES: Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells.

    MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.

    RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.

    CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.

    Matched MeSH terms: Proteolysis*
  12. Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC
    Curr Pharm Biotechnol, 2021;22(7):969-982.
    PMID: 33342408 DOI: 10.2174/1389201021666201218124450
    BACKGROUND: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients.

    OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.

    METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.

    RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.

    CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.

    Matched MeSH terms: Proteolysis/drug effects*
  13. Ansari SA, Devi S, Tenguria S, Kumar A, Ahmed N
    Cytokine, 2014 Aug;68(2):110-7.
    PMID: 24767863 DOI: 10.1016/j.cyto.2014.03.006
    HP0986 protein of Helicobacter pylori has been shown to trigger induction of proinflammatory cytokines (IL-8 and TNF-α) through the activation of NF-κB and also to induce Fas mediated apoptosis of human macrophage cells (THP-1). In this study, we unravel mechanistic details of the biological effects of this protein in a murine macrophage environment. Up regulation of MCP-1 and TNF-α in HP0986-induced RAW 264.7 cells occurred subsequent to the activation and translocation of NF-κB to the cell nucleus. Further, HP0986 induced apoptosis of RAW 264.7 cells through Fas activation and this was in agreement with previous observations made with THP-1 cells. Our studies indicated activation of TNFR1 through interaction with HP0986 and this elicited the aforementioned responses independent of TLR2, TLR4 or TNFR2. We found that mouse TNFR1 activation by HP0986 facilitates formation of a complex comprising of TNFR1, TRADD and TRAF2, and this occurs upstream of NF-κB activation. Furthermore, FADD also forms a second complex, at a later stage, together with TNFR1 and TRADD, resulting in caspase-8 activation and thereby the apoptosis of RAW 264.7 cells. In summary, our observations reveal finer details of the functional activity of HP0986 protein in relation to its behavior in a murine macrophage cell environment. These findings reconfirm the proinflammatory and apoptotic role of HP0986 signifying it to be an important trigger of innate responses. These observations form much needed baseline data entailing future in vivo studies of the functions of HP0986 in a murine model.
    Matched MeSH terms: Proteolysis
  14. Mukerjee N, Maitra S, Ghosh A, Subramaniyan V, Sharma R
    Drug Dev Res, 2023 Sep;84(6):1031-1036.
    PMID: 37391892 DOI: 10.1002/ddr.22091
    Exosome-based targeted delivery of Proteolysis-Targeting Chimeras (PROTACs) is an innovative approach that provides a promising solution for addressing the complex issues of viral diseases. This strategy significantly mitigates the off-target effects associated with traditional therapeutics by facilitating targeted delivery of PROTACs, which in turn enhances the overall therapeutic outcomes. Challenges like poor pharmacokinetics and unintended side effects, commonly observed with conventional PROTACs usage, are effectively managed with this approach. Emerging evidence affirms the potential of this delivery mechanism in curbing viral replication. However, it is crucial to undertake more comprehensive investigations for optimizing exosome-based delivery systems and conducting stringent safety and efficacy assessments within preclinical and clinical settings. The advancements in this field could potentially redefine the therapeutic landscape for viral diseases, opening new vistas for their management and treatment.
    Matched MeSH terms: Proteolysis
  15. Aqeel Y, Siddiqui R, Farooq M, Khan NA
    Exp Parasitol, 2015 Oct;157:170-6.
    PMID: 26297676 DOI: 10.1016/j.exppara.2015.08.007
    Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.
    Matched MeSH terms: Proteolysis/drug effects
  16. Siddiqui R, Saleem S, Khan NA
    Exp Parasitol, 2016 Jun 18;168:16-24.
    PMID: 27327524 DOI: 10.1016/j.exppara.2016.06.006
    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.
    Matched MeSH terms: Proteolysis
  17. Zhou C, Wu X, Pan D, Xia Q, Sun Y, Geng F, et al.
    Food Chem, 2024 Mar 15;436:137711.
    PMID: 37839122 DOI: 10.1016/j.foodchem.2023.137711
    To understand the mechanism of co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus (SX & SV) on structural protein degradation and taste enhancement of dry-cured bacon, protease activities, protein degradation, surface morphology of proteins and taste parameters of dry-cured bacon with Staphylococcus inoculation were investigated. The dry-cured bacon with co-inoculation of Staphylococcus xylosus and Staphylococcus vitulinus showed the best taste attributes. High residual activities in cathepsin B + L (more than 1.6-fold) and alanyl aminopeptidase (more than 1.4-fold) accelerated structural protein degradation in SX & SV. 32 down-regulated proteins were identified in SX & SV by TMT-labeled quantitative proteomic compared with control group; myosin and actin showed the most intense response to the accumulation of sweet and umami amino acids, and atomic force microscopy confirmed structural proteins breakdown by morphological changes. The accumulation of glutamic acid, alanine and lysine was mainly responsible for taste improvement of dry-cured bacon with Staphylococcus co-inoculation.
    Matched MeSH terms: Proteolysis
  18. Shori AB, Hong YC, Baba AS
    Food Res Int, 2021 05;143:110238.
    PMID: 33992351 DOI: 10.1016/j.foodres.2021.110238
    Four types of cheeses were prepared included plain- cheese (control), Codonopsis pilosula (CP)- cheese, plain- cheese with fish collagen (FC; control) and CP- cheese with FC. The effects of cheese samples on acidification, proteolysis of milk proteins using three methods (cadmium-ninhydrin method, O-phthaldialdehyde (OPA) assay, and electrophoresis assay), and angiotensin-converting enzyme (ACE)-inhibitory activity were investigated during 0, 2, & 4 weeks of ripening. In addition, the sensory evaluation was also investigated during 0, 2, 4, & 8 weeks of ripening. The presence of FC in CP- cheese increased the numbers of free amino acids (FAA) at 0 and 2 weeks. The addition of CP both in the presence and absence of FC affected positively (p 
    Matched MeSH terms: Proteolysis
  19. Mizrahi N, Gilon C, Atre I, Ogawa S, Parhar IS, Levavi-Sivan B
    PMID: 31354632 DOI: 10.3389/fendo.2019.00469
    Neurokinin B (NKB) and its cognate receptor (NK3R) are emerging as important components of the neuroendocrine regulation of reproduction. Unlike mammalian tac3, which encodes only one mature peptide (namely NKB), two mature peptides are predicted for each tac3 gene in fish and frogs. Therefore, it was designated as Neurokinin F (NKF). Hormone analogs with high and long-lasting biological activity are important tools for physiological and biological research; however, the availability of piscine-specific analogs is very limited. Therefore, we have developed specific NKB and NKF analogs based on the structure of the mammalian NKB analog-senktide. These analogs, specifically designed for longer half-lives by methylation of proteolysis sites, exhibited activity equal to those of the native NKB and NKF in short-term signal-transduction assays of tilapia NKB receptors. However, the analogs were found to be able to significantly increase the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and growth hormone (GH) in tilapia, as fast as 1 h after intraperitoneal (IP) injection. The impact of the analogs on LH and FSH secretion lasted longer compared to the effect of native peptides and salmon GnRH analog (sGnRHa). In addition, we harvested pituitaries 24 h post injection and measured LH, FSH and GH mRNA synthesis. Both analogs elevated mRNA levels of LH and GH, but only NKB analog increased FSH mRNA levels in the pituitary and all GnRH forms in the brain. NKB receptors were co-localized with all three types the GnRH neurons in tilapia brain in situ. We previously showed a direct effect of NKB at the pituitary level, and these new results suggest that the stronger impact of the NKB analog on GTH release is also due to an indirect effect through the activation of GnRH neurons. These results suggest that novel synthetic NKB analogs may serve as a tool for both research and agricultural purposes. Finally, the biological activity and regulatory role of NKB in tilapia brain and pituitary suggest that the NKB/NKBR system in fish is an important reproductive regulator in a similar way to the kisspeptin system in mammals.
    Matched MeSH terms: Proteolysis
  20. Adeyemi, K.D., Mislan, N., Aghwan, Z.A., Sarah, S.A., Sazili, A.Q.
    MyJurnal
    The study examined the protein profile of Pectoralis major muscle in broiler chickens subjected to different freezing and thawing methods. Pectoralis major muscle was excised from the carcasses of twenty broiler chickens and split into left and right halves. The left half was subjected to slow freezing (-20oC) while the right half was rapidly frozen (-80oC). The samples were stored at their respective temperature for 2 weeks and assigned to either of tap water (27oC, 30 min), room temperature (26oC, 60 min), microwave (750W, 10 min) or chiller (4oC, 6 h) thawing. Changes in myofibrillar proteins following the thawing methods were monitored through sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The electrophoretic profile indicated differences (p < 0.05) in intensities of the components of myofibrillar proteins among the thawing methods in both slow and rapidly frozen samples. Chiller thawing had significantly higher (p < 0.05) protein concentration than other methods in rapidly frozen samples. However, in slow freezing, there were no significant differences in protein concentration among the thawing methods. In rapidly frozen samples, the protein optical densities at molecular weight of 21, 27, 55 and 151kDa in tap water, chiller and room temperature thawing did not differ (p < 0.05). Similarly, in slowly frozen samples, protein optical densities at molecular weight of 21, 27, 85 and 151 kDa were not significantly different among chill, tap water and room temperature thawing. Microwave thawing consistently caused higher protein degradation resulting in significantly lower (p < 0.05) protein quality and quantity in both freezing methods.
    Matched MeSH terms: Proteolysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links