Displaying publications 1 - 20 of 357 in total

Abstract:
Sort:
  1. Lau MML, Kho CJY, Chung HH, Zulkharnain A
    Fish Shellfish Immunol, 2024 May;148:109518.
    PMID: 38513913 DOI: 10.1016/j.fsi.2024.109518
    Pseudomonas species are one of the most threatening fish pathogens which reside a wide range of environments. In this study, the dominant bacteria were isolated from diseased Malaysian mahseer (Tor tambroides) and tentatively named CM-01. It was identified as Pseudomonas koreensis based on its biochemical, morphological, genetic and physiological information. Its pathogenicity was found to be correlated with twelve virulence genes identified including iron uptake, protease, acylhomoserine lactone synthase gacS/gacA component regulation system, type IV secretion system, hydrogen cyanide production, exolysin, alginate biosynthesis, flagella and pili. The median lethal dose (LD50) for the CM-01 isolate on Malaysian mahseer was documented at 5.01 × 107 CFU/mL. The experimental infection revealed that CM-01 led to significant histological lesions in the fish, ultimately resulting in death. These lesions comprise necrosis, tissue thickening and aggregation. Drug sensitivity tests had shown its susceptibility to beta-lactam combination agents and further suggest its drug of choice. Its growing features had shown its growth at optimal temperature and pH. To the best of our knowledge, this is the first report of P. koreensis linked to diseased T. tambroides. STATEMENT OF RELEVANCE: In this research, a novel strain of Pseudomonas koreensis, CM-01 was isolated from diseased T. tambroides for the first time. The antimicrobial susceptibility, pathogenicity, virulence genes and growth characteristics of CM-01 were studied. These findings established a scientific foundation for the recognition of P. koreensis and the management of fish infections caused by this pathogen.
    Matched MeSH terms: Pseudomonas/genetics
  2. Nithyapriya S, Sundaram L, Eswaran SUD, Perveen K, Alshaikh NA, Sayyed RZ, et al.
    Microb Ecol, 2024 Apr 17;87(1):60.
    PMID: 38630182 DOI: 10.1007/s00248-024-02377-0
    Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.
    Matched MeSH terms: Pseudomonas fluorescens*
  3. De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, et al.
    Microbiol Spectr, 2024 Jan 11;12(1):e0321923.
    PMID: 38084971 DOI: 10.1128/spectrum.03219-23
    Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
    Matched MeSH terms: Pseudomonas aeruginosa
  4. Alhajj N, Yahya MFZR, O'Reilly NJ, Cathcart H
    Eur J Pharm Sci, 2024 Jan 01;192:106654.
    PMID: 38013123 DOI: 10.1016/j.ejps.2023.106654
    Cystic fibrosis (CF) is an inherited lung disease characterised by the accumulation of thick layers of dried mucus in the lungs which serve as a nidus for chronic infection. Pseudomonas aeruginosa is the predominant cause of chronic lung infection in cystic fibrosis. The dense mucus coupled with biofilm formation hinder antibiotic penetration and prevent them from reaching their target. Mucoactive agents are recommended in the treatment of CF in combination with antibiotics. In spite of the extensive research in developing novel drug combinations for the treatment of lung infection in CF, to our knowledge, there is no study that combines antibiotic, antibiofilm and mucoactive agent in a single inhaled dry powder formulation. In the present study, we investigate the possibility of adding a mucoactive agent to our previously developed ciprofloxacinquercetin (antibiotic-antibiofilm) dry powder for inhalation. Three mucoactive agents, namely mannitol (MAN), N-acetyl-L-cysteine (NAC) and ambroxol hydrochloride (AMB), were investigated for this purpose. The ternary combinations were prepared via spray drying without the addition of excipients. All ternary combinations conserved or improved the antibacterial and biofilm inhibition activities of ciprofloxacin against P. aeruginosa (ATCC 10145). The addition of AMB resulted in an amorphous ternary combination (SD-CQA) with superior physical stability as indicated by DSC and nonambient XRPD. Furthermore, SD-CQA displayed better in vitro aerosolization performance (ED ∼ 71 %; FPF ∼ 49 %) compared to formulations containing MAN and NAC (ED ∼ 64 % and 44 %; FPF ∼ 44 % and 29 %, respectively). In conclusion, a ternary drug combination powder with suitable aerosolization, physical stability and antibacterial/antibiofilm properties was prepared by a single spray drying step.
    Matched MeSH terms: Pseudomonas aeruginosa
  5. Koh CMM, Ping LSY, Xuan CHH, Theng LB, San HS, Palombo EA, et al.
    Bioengineered, 2023 Dec;14(1):2243416.
    PMID: 37552115 DOI: 10.1080/21655979.2023.2243416
    The rampant spread of multidrug-resistant Pseudomonas aeruginosa strains severely threatens global health. This severity is compounded against the backdrop of a stagnating antibiotics development pipeline. Moreover, with many promising therapeutics falling short of expectations in clinical trials, targeting the las quorum sensing (QS) system remains an attractive therapeutic strategy to combat P. aeruginosa infection. Thus, our primary goal was to develop a drug prediction algorithm using machine learning to identify potent LasR inhibitors. In this work, we demonstrated using a Multilayer Perceptron (MLP) algorithm boosted with AdaBoostM1 to discriminate between active and inactive LasR inhibitors. The optimal model performance was evaluated using 5-fold cross-validation and test sets. Our best model achieved a 90.7% accuracy in distinguishing active from inactive LasR inhibitors, an area under the Receiver Operating Characteristic Curve value of 0.95, and a Matthews correlation coefficient value of 0.81 when evaluated using test sets. Subsequently, we deployed the model against the Enamine database. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies, Molecular Dynamics simulations, MM-GBSA analysis, and Free Energy Landscape analysis. Our data indicate that several of our chosen top hits showed better ligand-binding affinities than naringenin, a competitive LasR inhibitor. Among the six top hits, five of these compounds were predicted to be LasR inhibitors that could be used to treat P. aeruginosa-associated infections. To our knowledge, this study provides the first assessment of using an MLP-based QSAR model for discovering potent LasR inhibitors to attenuate P. aeruginosa infections.
    Matched MeSH terms: Pseudomonas aeruginosa
  6. Al-Mijalli SH, El Hachlafi N, Jeddi M, Abdallah EM, Assaggaf H, Qasem A, et al.
    Biomed Pharmacother, 2023 Nov;167:115609.
    PMID: 37801906 DOI: 10.1016/j.biopha.2023.115609
    Cupressus sempervirens is a known traditional plant used to manage various ailments, including cancer, inflammatory and infectious diseases. In this investigation, we aimed to explore the chemical profile of Cupressus sempervirens essential oil (CSEO) as well as their antibacterial mode of action. The volatile components were characterized using gas chromatography coupled to a mass spectrometer (GC-MS). The results revealed remarkable antibacterial properties of EO derived from C. sempervirens. GC-MS analysis indicated that C. sempervirens EO characterized by δ-3-carene (47.72%), D-limonene (5.44%), β-pinene (4.36%), β-myrcene (4.02%). The oil exhibited significant inhibitory effects against a range of bacteria, including Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 13048, Bacillus cereus (Clinical isolate), Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922. These inhibitory effects surpassed those of conventional antibiotics. Furthermore, the EO demonstrated low minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), indicating its bactericidal nature (MBC/MIC < 4.0). Time-kill kinetics analysis showed that CSEO was particularly effective at 2 × MIC doses, rapidly reduced viable count of B. subtilis and P. aeruginosa within 8 h. This suggests that the oil acts quickly and efficiently. The cell membrane permeability test further demonstrated the impact of CSEO on the relative conductivity of B. subtilis and P. aeruginosa, both at 2 × MIC concentrations. These observations suggest that EO disrupts the bacterial membrane, thereby influencing their growth and viability. Additionally, the cell membrane integrity test indicated that the addition of CSEO to bacterial cultures resulted in the significant release of proteins from the bacterial cells. This suggests that EO affects the structural integrity of the bacterial cells. Furthermore, the anti-biofilm assay confirmed the efficacy of CSEO as a potent anti-biofilm agent. It demonstrated the oil's ability to inhibit quorum sensing, a crucial mechanism for biofilm formation, and its competitive performance compared to the tested antibiotics.
    Matched MeSH terms: Pseudomonas aeruginosa
  7. Liu Y, Marshall NM, Yu SS, Kim W, Gao YG, Robinson H, et al.
    Inorg Chem, 2023 Jul 24;62(29):11618-11625.
    PMID: 37424080 DOI: 10.1021/acs.inorgchem.3c01365
    In order to investigate the effects of the secondary coordination sphere in fine-tuning redox potentials (E°') of type 1 blue copper (T1Cu) in cupredoxins, we have introduced M13F, M44F, and G116F mutations both individually and in combination in the secondary coordination sphere of the T1Cu center of azurin (Az) from Pseudomonas aeruginosa. These variants were found to differentially influence the E°' of T1Cu, with M13F Az decreasing E°', M44F Az increasing E°', and G116F Az showing a negligible effect. In addition, combining the M13F and M44F mutations increases E°' by 26 mV relative to WT-Az, which is very close to the combined effect of E°' by each mutation. Furthermore, combining G116F with either M13F or M44F mutation resulted in negative and positive cooperative effects, respectively. Crystal structures of M13F/M44F-Az, M13F/G116F-Az, and M44F/G116F-Az combined with that of G116F-Az reveal these changes arise from steric effects and fine-tuning of hydrogen bond networks around the copper-binding His117 residue. The insights gained from this study would provide another step toward the development of redox-active proteins with tunable redox properties for many biological and biotechnological applications.
    Matched MeSH terms: Pseudomonas aeruginosa/chemistry
  8. Al-Wrafy FA, Alariqi R, Noman EA, Al-Gheethi AA, Mutahar M
    Microbiol Res, 2023 Mar;268:127298.
    PMID: 36610273 DOI: 10.1016/j.micres.2022.127298
    Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.
    Matched MeSH terms: Pseudomonas aeruginosa/genetics; Pseudomonas Infections*
  9. Nik Zuraina NMN, Mohamad S, Hasan H, Goni MD, Suraiya S
    Pathog Glob Health, 2023 Feb;117(1):63-75.
    PMID: 35331083 DOI: 10.1080/20477724.2022.2028378
    Respiratory tract infections (RTIs), including pneumonia and pulmonary tuberculosis, are among the leading causes of death worldwide. The use of accurate diagnostic tests is crucial to initiate proper treatment and therapy to reduce the mortality rates for RTIs. A PCR assay for simultaneous detection of six respiratory bacteria: Haemophilus influenzae, Klebsiella pneumoniae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, was developed in our lab. The current study aimed to evaluate the performance of this assay along with the retrospective surveillance of respiratory pathogens at a teaching hospital in Kelantan, Malaysia. Leftover sputa (n = 200) from clinical laboratories were collected and undergone DNA template preparation for PCR analysis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the PCR assay were determined in comparison with the gold standard sputum culture. Overall, the accuracy performance of this assay was 94.67% (95% CI: 90.87% to 97.21%) with sensitivity, specificity, PPV and NPV of 100%, 91.67%, 87.1% and 100%, respectively. Based on the organisms detected from sputa, K. pneumoniae ranked as the top isolate (n = 48), followed by P. aeruginosa (n = 13) and H. influenzae (n = 10). Surveillance among the patients showed that the associations of bacterial positive with gender and means of acquisition were found significant (p values = 0.049 and 0.001, respectively). Besides the promising performance of this ready-to-use molecular-based assay for the rapid detection of selected bacteria pathogens, this study also highlighted significant spread of K. pneumoniae RTIs in the community.
    Matched MeSH terms: Pseudomonas aeruginosa/genetics
  10. Mehmood S, Ilyas N, Akhtar N, Chia WY, Shati AA, Alfaifi MY, et al.
    Environ Res, 2023 Jan 15;217:114784.
    PMID: 36395868 DOI: 10.1016/j.envres.2022.114784
    Vast amounts of plastic waste are causing serious environmental issues and urge to develop of new remediation methods. The aim of the study is to determine the role of inorganic (nitric acid), organic (starch addition), and biological (Pseudomonas aeruginosa) soil amendments on the degradation of Polyethylene (PE) and phytotoxic assessment for the growth of lettuce plant. The PE-degrading bacteria were isolated from the plastic-contaminated soil. The strain was identified as Pseudomonas aeruginosa (OP007126) and showed the highest degradation percentage for PE. PE was pre-treated with nitric acid as well as starch and incubated in the soil, whereas P. aeruginosa was also inoculated in PE-contaminated soils. Different combinations were also tested. FTIR analysis and weight reduction showed that though nitric acid was efficient in degradation, the combined application of starch and bacteria also showed effective degradation of PE. Phytotoxicity was assessed using morphological, physiological, and biochemical parameters of plant. Untreated PE significantly affected plants' physiology, resulting in a 45% reduction in leaf chlorophyll and a 40% reduction in relative water content. It also had adverse effects on the biochemical parameters of lettuce. Bacterial inoculation and starch treatment mitigated the harmful impact of stress and improved plants' growth as well as physiological and biochemical parameters; however, the nitric treatment proved phytotoxic. The observed results revealed that bacteria and starch could be effectively used for the degradation of pre-treated PE.
    Matched MeSH terms: Pseudomonas aeruginosa*
  11. Balakrishnan S, Rahman RNZRA, Noor NDM, Latip W, Ali MSM
    J Biomol Struct Dyn, 2023;41(21):11498-11509.
    PMID: 36598349 DOI: 10.1080/07391102.2022.2164519
    Aquaporin is a water channel protein that facilitates the movement of water across the cell membrane. Aquaporin from the Antarctic region has been noted for its psychrophilic properties and its ability to perform at a lower temperature but there remains limited understanding of the water mechanism of Antarctic Pseudomonas sp. strain AMS3 However, studies regarding aquaporin isolated from psychrophilic Pseudomonas sp. are still scattered. Recently, the genome sequence of an Antarctic Pseudomonas sp. strain AMS3 revealed a gene sequence encoding for a putative aquaporin designated as AqpZ1 AMS3. In this study, structure analysis and a molecular dynamics (MD) simulation of a predicted model of a fully hydrated aquaporin tetramer embedded in a lipid bilayer was performed at different temperatures for structural flexibility and stability analysis. The MD simulation results revealed that the structures were able to remain stable at low to medium temperatures. The protein was observed to have high flexibility in the loop region as compared to the helices region throughout the simulated temperatures. The selectivity filter and NPA motifs play a major role in solute selectivity and the pore radius of the protein. The structural and functional characterization of this psychrophilic aquaporin provides new insights for the future applications of this protein.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Pseudomonas/genetics; Pseudomonas/metabolism
  12. Ali SG, Jalal M, Ahmad H, Umar K, Ahmad A, Alshammari MB, et al.
    Molecules, 2022 Dec 08;27(24).
    PMID: 36557818 DOI: 10.3390/molecules27248685
    Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.
    Matched MeSH terms: Pseudomonas aeruginosa*
  13. Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500402 DOI: 10.3390/molecules27238309
    In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
    Matched MeSH terms: Pseudomonas aeruginosa
  14. Sulayyim HJA, Ismail R, Hamid AA, Ghafar NA
    Int J Environ Res Public Health, 2022 Sep 21;19(19).
    PMID: 36231256 DOI: 10.3390/ijerph191911931
    One of the public health issues faced worldwide is antibiotic resistance (AR). During the novel coronavirus (COVID-19) pandemic, AR has increased. Since some studies have stated AR has increased during the COVID-19 pandemic, and others have stated otherwise, this study aimed to explore this impact. Seven databases-PubMed, MEDLINE, EMBASE, Scopus, Cochrane, Web of Science, and CINAHL-were searched using related keywords to identify studies relevant to AR during COVID-19 published from December 2019 to May 2022, according to PRISMA guidelines. Twenty-three studies were included in this review, and the evidence showed that AR has increased during the COVID-19 pandemic. The most commonly reported resistant Gram-negative bacteria was Acinetobacterbaumannii, followed by Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. A. baumannii and K. pneumonia were highly resistant to tested antibiotics compared with E. coli and P. aeruginosa. Moreover, K. pneumonia showed high resistance to colistin. Commonly reported Gram-positive bacteria were Staphylococcus aureus and Enterococcus faecium. The resistance of E. faecium to ampicillin, erythromycin, and Ciprofloxacin was high. Self-antibiotic medication, empirical antibiotic administration, and antibiotics prescribed by general practitioners were the risk factors of high levels of AR during COVID-19. Antibiotics' prescription should be strictly implemented, relying on the Antimicrobial Stewardship Program (ASP) and guidelines from the World Health Organization (WHO) or Ministry of Health (MOH).
    Matched MeSH terms: Pseudomonas aeruginosa
  15. Lee WH, Rohanizadeh R, Loo CY
    Colloids Surf B Biointerfaces, 2021 Oct;206:111938.
    PMID: 34198233 DOI: 10.1016/j.colsurfb.2021.111938
    This study developed a novel bioactive bone substitute (hydroxyapatite, HA) with improved anti-biofilm activity by functionalizing with curcumin (anti-biofilm compound) which provide sufficient flux of curcumin concentration for 14 days. The released curcumin acts to inhibit biofilm formation and control the number of viable planktonic cells simultaneously. To prepare curcumin-functionalized HA, different concentrations of curcumin (up to 3% w/v) were added simultaneously during the precipitation process of HA. The highest loading (50 mg/g HA) of curcumin onto HA was achieved with 2% w/v of curcumin. Physicochemical characterizations of curcumin-functionalized HA composites revealed that curcumin was successfully incorporated onto HA. Curcumin was sustainably released over 14 days, while higher curcumin release was observed in acidic condition (pH 4.4) compared to physiological (pH 7.4). The cytotoxicity assays revealed that no significant difference on bone cells growth on curcumin-functionalized HA and non-functionalized HA. Curcumin-functionalized HA was effective to inhibit bacterial cell attachment and subsequent biofilm maturation stages. The anti-biofilm effect was stronger against Staphylococcus aureus compared to Pseudomonas aeruginosa. The curcumin-functionalized HA composite significantly delayed the maturation of S. aureus compared to non-functionalized HA in which microcolonies of cells only begin to appear at 96 h. Up to 3.0 log reduction in colony forming unit (CFU)/mL of planktonic cells was noted at 24 h of incubation for both microorganisms. Thus, in this study we have suggested that curcumin loaded HA could be an alternative antimicrobial agent to control the risk of infections in post-surgical implants.
    Matched MeSH terms: Pseudomonas aeruginosa
  16. Chiong F, Wasef MS, Liew KC, Cowan R, Tsai D, Lee YP, et al.
    BMC Infect Dis, 2021 Jul 09;21(1):671.
    PMID: 34243714 DOI: 10.1186/s12879-021-06372-5
    BACKGROUND: Pseudomonas aeruginosa bacteraemia (PAB) is associated with high mortality. The benefits of infectious diseases consultation (IDC) has been demonstrated in Staphylococcal aureus bacteraemia and other complex infections. Impact of IDC in PAB is unclear. This study aimed to evaluate the impact of IDC on the management and outcomes in patients with PAB.

    METHODS: This is a retrospective cohort single-centre study from 1 November 2006 to 29 May 2019, in all adult patients admitted with first episode of PAB. Data collected included demographics, clinical management and outcomes for PAB and whether IDC occurred. In addition, 29 Pseudomonas aeruginosa (PA) stored isolates were available for Illumina whole genome sequencing to investigate if pathogen factors contributed to the mortality.

    RESULTS: A total of 128 cases of PAB were identified, 71% received IDC. Patients who received IDC were less likely to receive inappropriate duration of antibiotic therapy (4.4%; vs 67.6%; p 

    Matched MeSH terms: Pseudomonas aeruginosa*; Pseudomonas Infections/drug therapy*; Pseudomonas Infections/mortality; Pseudomonas Infections/surgery
  17. Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, et al.
    Sci Rep, 2021 Jul 05;11(1):13859.
    PMID: 34226594 DOI: 10.1038/s41598-021-92622-0
    The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects; Pseudomonas aeruginosa/pathogenicity
  18. Teoh MC, Furusawa G, Veera Singham G
    Arch Microbiol, 2021 Jul;203(5):1891-1915.
    PMID: 33634321 DOI: 10.1007/s00203-021-02230-9
    Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
    Matched MeSH terms: Pseudomonas/metabolism; Pseudomonas/physiology*
  19. Heffernan AJ, Sime FB, Lim SMS, Naicker S, Andrews KT, Ellwood D, et al.
    Drugs R D, 2021 Jun;21(2):203-215.
    PMID: 33797739 DOI: 10.1007/s40268-021-00344-5
    BACKGROUND: Even though nebulised administration of amikacin can achieve high epithelial lining fluid concentrations, this has not translated into improved patient outcomes in clinical trials. One possible reason is that the cellular and chemical composition of the epithelial lining fluid may inhibit amikacin-mediated bacterial killing.

    OBJECTIVE: The objective of this study was to identify whether the epithelial lining fluid components inhibit amikacin-mediated bacterial killing.

    METHODS: Two amikacin-susceptible (minimum inhibitory concentrations of 2 and 8 mg/L) Pseudomonas aeruginosa isolates were exposed in vitro to amikacin concentrations up to 976 mg/L in the presence of an acidic pH, mucin and/or surfactant as a means of simulating the epithelial lining fluid, the site of bacterial infection in pneumonia. Pharmacodynamic modelling was used to describe associations between amikacin concentrations, bacterial killing and emergence of resistance.

    RESULTS: In the presence of broth alone, there was rapid and extensive (> 6 - log10) bacterial killing, with emergence of resistance identified in amikacin concentrations < 976 mg/L. In contrast, the rate and extent of bacterial killing was reduced (≤ 5 - log10) when exposed to an acidic pH and mucin. Surfactant did not appreciably impact the bacterial killing or resistance emergence when compared with broth alone for either isolate. The combination of mucin and an acidic pH further reduced the rate of bacterial killing, with the maximal bacterial killing occurring 24 h following initial exposure compared with approximately 4-8 h for either mucin or an acidic pH alone.

    CONCLUSIONS: Our findings indicate that simulating the epithelial lining fluid antagonises amikacin-mediated killing of P. aeruginosa, even at the high concentrations achieved following nebulised administration.

    Matched MeSH terms: Pseudomonas aeruginosa*
  20. Lim MJ, Shahri NNM, Taha H, Mahadi AH, Kusrini E, Lim JW, et al.
    Carbohydr Polym, 2021 May 15;260:117806.
    PMID: 33712152 DOI: 10.1016/j.carbpol.2021.117806
    Chitin-encapsulated cadmium sulfide quantum dots (CdS@CTN QDs) were successfully synthesized from chitin and Cd(NO3)2 precursor using the colloidal chemistry method, toward the development of biocompatible and biodegradable QDs for biomedical applications. CdS@CTN QDs exhibited the nanocrystalline cubic CdS encapsulated by α-chitin. The average particle size of CdS@CTN QDs was estimated using empirical Henglein model to be 3.9 nm, while their crystallite size was predicted using Scherrer equation to be 4.3 nm, slightly larger compared to 3-mercaptopropionic acid-capped CdS QDs (3.2 and 3.6 nm, respectively). The mechanism of formation was interpreted based on the spectroscopic data and X-ray crystal structures of CdS@CTN QDs fabricated at different pH values and mass ratios of chitin to Cd(NO3)2 precursor. As an important step to explore potential biomolecular and biological applications of CdS@CTN QDs, their antibacterial activities were tested against four different bacterial strains; i.e. Escherichia coli, Bacillus subtillus, Staphylococcus aureus and Pseudomonas aeruginosa.
    Matched MeSH terms: Pseudomonas aeruginosa
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links