Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Bert F, Vanjak D, Leflon-Guibout V, Mrejen S, Delpierre S, Redondo A, et al.
    Clin Infect Dis, 2007 Mar 1;44(5):764-5.
    PMID: 17278079
    Matched MeSH terms: Pseudomonas Infections/microbiology
  2. Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, et al.
    J Ethnopharmacol, 2012 Jan 31;139(2):657-63.
    PMID: 22193176 DOI: 10.1016/j.jep.2011.12.016
    Swietenia macrophylla or commonly known as big leaf mahogany, has been traditionally used as an antibacterial and antifungal agent.
    Matched MeSH terms: Pseudomonas Infections/microbiology
  3. Hrabák J, Fridrichová M, Stolbová M, Bergerová T, Zemlickova H, Urbaskova P
    Euro Surveill, 2009 Jan 29;14(4).
    PMID: 19215712
    Since 2005, invasive isolates of Pseudomonas aeruginosa have been collected in the Czech Republic as part of the European Antibiotic Resistance Surveillance System (EARSS). Forty-eight microbiology laboratories throughout the country including approximately 81% of the population provide consecutive isolates from blood and cerebrospinal fluid. Surprisingly, no metallo-beta-lactamase (MBL) was found in 1,259 invasive isolates tested over the past three years until the detection of two MBL-producing strains in mid-2008. Both strains were isolated from patients hospitalised in one regional hospital. The MBL was identified as IMP-7, which had been seen previously in Canada, Japan, Malaysia and Slovakia.
    Matched MeSH terms: Pseudomonas Infections/microbiology*
  4. Ismail NS, Subbiah SK, Taib NM
    Curr Pharm Biotechnol, 2020;21(14):1539-1550.
    PMID: 32598252 DOI: 10.2174/1389201021666200629145217
    BACKGROUND: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism.

    METHODS: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog).

    RESULTS AND DISCUSSION: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid.

    CONCLUSION: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.

    Matched MeSH terms: Pseudomonas Infections/microbiology*
  5. Kanamori T, Kuze N, Bernard H, Malim TP, Kohshima S
    Primates, 2012 Jul;53(3):221-6.
    PMID: 22350273 DOI: 10.1007/s10329-012-0297-3
    Reports of wild great ape fatalities have been very limited, and only two have described wild orangutan deaths. We found a wounded juvenile female Bornean orangutan on 7 October 2006 in the Danum Valley, Sabah, Malaysia, and observed the individual's behavior for 7 days until her death on 13 October 2006. The 5-6-year-old orangutan, which we had observed since 2004, was wounded in the left brachium, back, and right hand. The individual's behavior changed after injury; the mean nest-nest active time became significantly shorter than before injury (from 12 h 3 min to 9 h 33 min), the mean waking time became significantly later (0552-0629 hours) and the mean bedtime became significantly earlier (from 1747 to 1603 hours). In the activity budget, resting increased significantly from 28.0 to 53.3%. Traveling and feeding decreased significantly from 23.5 to 12.7% and from 45.6 to 32.8%, respectively. The rate of brachiation during traveling and nest making decreased, whereas ground activity increased from 0 to 9%. We observed one vomiting incident and four occurrences of watery diarrhea during the 7 days before the individual died. The results of an autopsy performed by a local veterinarian suggested that the cause of death was septicemia because of Pseudomonas aeruginosa infection of the severely contaminated wounds. The morphology and distribution of the wounds suggested they had been incurred during an attack by a large animal with fangs and/or claws. This juvenile female became independent of its mother at ~4-5 years of age, slightly earlier than average. This individual might have been vulnerable to predatory attack because of her small body size (~5 kg at death) and lack of the mother's protection.
    Matched MeSH terms: Pseudomonas Infections/microbiology
  6. Khosravi Y, Tee Tay S, Vadivelu J
    Diagn Microbiol Infect Dis, 2010 Jul;67(3):294-6.
    PMID: 20462725 DOI: 10.1016/j.diagmicrobio.2010.02.010
    Ninety (n = 90) imipenem-resistant Pseudomonas aeruginosa (IRPA) clinical isolates collected randomly during 2005 to 2008 from University Malaya Medical Center were assessed for the presence of different variants of metallo-beta-lactamase (MBL) genes. Polymerase chain reaction (PCR) assay detected 32 (n = 32) MBL gene PCR-positive isolates with the presence of bla(IMP) gene in 14 (n = 14) and bla(VIM) in 18 (n = 18) isolates. Four allelic variants, bla(IMP-7) (12 isolates), bla(IMP-4) (2 isolates), bla(VIM-2) (17 isolates), and bla(VIM-11) (1 isolate), of MBL genes were identified. This study is the first report of detection of bla(IMP-4), bla(VIM-2), and bla(VIM-11) MBL genes from IRPA clinical isolates in Malaysia.

    Study site: University Malaya Medical Center (UMMC)
    Matched MeSH terms: Pseudomonas Infections/microbiology
  7. Khosravi Y, Tay ST, Vadivelu J
    J Med Microbiol, 2011 Jul;60(Pt 7):988-994.
    PMID: 21436370 DOI: 10.1099/jmm.0.029868-0
    In this study, 90 non-replicate imipenem-resistant Pseudomonas aeruginosa (IRPA) Malaysian isolates collected between October 2005 and March 2008 were subjected to a screening test for detection of the integron and the gene cassette. Class 1 integrons were detected in 54 IRPA clinical isolates, whilst three isolates contained class 2 integrons. Analysis of the gene cassettes associated with the class 1 integrons showed the detection of accC1 in isolates carrying bla(IMP-7) and aacA7 in isolates carrying bla(VIM-2). aadA6 was detected in two isolates carrying bla(IMP-4). Using random amplification of polymorphic DNA analysis, 14 PCR fingerprint patterns were generated from the 32 isolates carrying metallo-β-lactamase (MBL) genes (35.5 %), whilst 20 patterns were generated from the 58 non-MBL gene isolates (64.4 %). Based on the differences in the fingerprinting patterns, two clusters (A and B) were identified among the MBL-producing isolates. Cluster A comprised 18 isolates (56 %) carrying the bla(VIM) gene, whereas cluster B comprised 14 (44 %) isolates carrying the bla(IMP) gene. The non-MBL isolates were divided into clusters C and D. Cluster C comprised 22 non-MBL isolates harbouring class 1 integrons, whilst cluster D consisted of three isolates carrying class 2 integrons. These findings suggest that the class 1 integron is widespread among P. aeruginosa isolated in Malaysia and that characterization of cassette arrays of integrons will be a useful epidemiological tool to study the evolution of multidrug resistance and the dissemination of antibiotic resistance genes.
    Matched MeSH terms: Pseudomonas Infections/microbiology*
  8. Kim MJ, Bae IK, Jeong SH, Kim SH, Song JH, Choi JY, et al.
    J Antimicrob Chemother, 2013 Dec;68(12):2820-4.
    PMID: 23843299 DOI: 10.1093/jac/dkt269
    To investigate the epidemiological traits of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) clinical isolates collected by the Asian Network for Surveillance of Resistant Pathogens (ANSORP).
    Matched MeSH terms: Pseudomonas Infections/microbiology*
  9. Kor SB, Choo QC, Chew CH
    J Med Microbiol, 2013 Mar;62(Pt 3):412-420.
    PMID: 23180481 DOI: 10.1099/jmm.0.053645-0
    This study investigated 147 multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from hospitalized patients in Malaysia. Class 1 integrons were the most dominant class identified (45.6%). Three isolates were shown to contain class 2 integrons (2.0%), whilst one isolate harboured both class 1 and 2 integrons. No class 3 integrons were detected in this study. In addition, the sul1 gene was amplified in 35% of isolates and was significantly associated with the presence of integrase genes in an integron structure. RFLP and DNA sequencing analyses revealed the presence of 19 different cassette arrays among the detected integrons. The most common gene cassettes were those encoding resistance towards aminoglycosides (aad) and trimethoprim (dfr). As far as is known, this study is the first to identify integron-carrying cassette arrays such as aadA2-linF, aacC3-cmlA5 and aacA4-catB8-aadA1 in the Malaysian population. Patients' age was demonstrated as a significant risk factor for the acquisition of integrons (P=0.028). Epidemiological typing using PFGE also demonstrated a clonal relationship among isolates carrying identical gene cassettes in Klebsiella pneumoniae and P. aeruginosa but not in Escherichia coli isolates.
    Matched MeSH terms: Pseudomonas Infections/microbiology*
  10. Liew SM, Rajasekaram G, Puthucheary SD, Chua KH
    J Glob Antimicrob Resist, 2018 06;13:271-273.
    PMID: 29432937 DOI: 10.1016/j.jgar.2018.01.026
    OBJECTIVES: The increasing incidence of carbapenem-resistant Pseudomonas aeruginosa along with the discovery of novel metallo-β-lactamases (MBLs) is of concern. In this study, the isolation of MBL-producing P. aeruginosa clinical strains in Malaysia was investigated.

    METHODS: A total of 53 P. aeruginosa clinical strains were isolated from different patients in Sultanah Aminah Hospital (Johor Bahru, Malaysia) in 2015. Antimicrobial susceptibility testing was performed, and minimum inhibitory concentrations (MICs) of imipenem and meropenem were determined by Etest. Carbapenem-resistant strains were screened for MBL production by the imipenem-ethylene diamine tetra-acetic acid (IMP-EDTA) double-disk synergy test, MBL imipenem/imipenem-inhibitor (IP/IPI) Etest and PCR. Multilocus sequence typing (MLST) analysis was performed for genotyping of the isolates.

    RESULTS: Among the 53 clinical strains, 3 (5.7%) were identified as MBL-producers. Multidrug resistance was observed in all three strains, and two were resistant to all of the antimicrobials tested. Sequencing analysis confirmed that the three strains harboured carbapenemase genes (blaIMP-1, blaVIM-2 and blaNDM-1 in one isolate each). These multidrug-resistant strains were identified as sequence type 235 (ST235) and ST308.

    CONCLUSIONS: The blaIMP-1 and blaNDM-1 genes have not previously been reported in Malaysian P. aeruginosa isolates. The emergence of imipenemase 1 (IMP-1)- and New Delhi metallo-β-lactamase 1 (NDM-1)-producing P. aeruginosa in Malaysia maybe travel-associated.

    Matched MeSH terms: Pseudomonas Infections/microbiology
  11. Lim KT, Yasin RM, Yeo CC, Puthucheary SD, Balan G, Maning N, et al.
    J Microbiol Immunol Infect, 2009 Jun;42(3):197-209.
    PMID: 19812853
    Pseudomonas aeruginosa is the third most common pathogen causing nosocomial infections. The objective of this study was to investigate the antimicrobial resistance profiles and genetic diversity of hospital isolates of P. aeruginosa and to investigate the presence of several resistance genes and integrons.
    Matched MeSH terms: Pseudomonas Infections/microbiology*
  12. Loo CY, Lee WH, Lauretani G, Scalia S, Cipolla D, Traini D, et al.
    Pharm Res, 2018 Feb 07;35(3):50.
    PMID: 29417313 DOI: 10.1007/s11095-018-2350-4
    PURPOSE: The failure of chronic therapy with antibiotics to clear persistent respiratory infection is the key morbidity and mortality factor for patients with chronic lung diseases, primarily due to the presence of biofilm in the lungs. It is hypothesised that carbon sources, such as mannitol, could stimulate the metabolic activity of persister cells within biofilms and restore their susceptibility to antibiotics. The aims of the current study are to: (1) establish a representative in vitro model of Pseudomonas aeruginosa biofilm lung infection, and (2) investigate the effects of nebulised mannitol on antibiotic efficacy, focusing on ciprofloxacin, in the eradication of biofilm.

    METHOD: Air interface biofilm was cultured onto Snapwell inserts incorporated into a modified pharmacopeia deposition apparatus, the Anderson Cascade Impactor (ACI). Three different formulations including mannitol only, ciprofloxacin only and combined ciprofloxacin and mannitol were nebulised onto the P. aeruginosa biofilm using the modified ACI. Antibacterial effectiveness was evaluated using colony-forming units counts, biofilm penetration and scanning electron microscopy.

    RESULTS: Nebulised mannitol promotes the dispersion of bacteria from the biofilm and demonstrated a synergistic enhancement of the antibacterial efficacy of ciprofloxacin compared to delivery of antibiotic alone.

    CONCLUSIONS: The combination of ciprofloxacin and mannitol may provide an important new strategy to improve antibiotic therapy for the treatment of chronic lung infections. Furthermore, the development of a representative lung model of bacterial biofilm could potentially be used as a platform for future new antimicrobial pre-clinical screening.

    Matched MeSH terms: Pseudomonas Infections/microbiology
  13. Phoon HYP, Hussin H, Hussain BM, Thong KL
    Microb Drug Resist, 2018 Oct;24(8):1108-1116.
    PMID: 29437541 DOI: 10.1089/mdr.2017.0258
    Pseudomonas aeruginosa infections account for high morbidity and mortality rates worldwide. Increasing resistance toward β-lactams, especially carbapenems, poses a serious therapeutic challenge. However, the multilocus sequence typing (MLST) of extended-spectrum beta lactamase (ESBL)- and carbapenemase-producing clinical P. aeruginosa has not been reported in Malaysia. This study aimed to determine the antibiotic susceptibility profiles, resistance genes, pulsotypes, and sequence types (STs) of clinical P. aeruginosa from a Malaysian tertiary hospital. These characteristics were analyzed by disk diffusion, minimum inhibitory concentration, polymerase chain reaction, pulsed-field gel electrophoresis (PFGE), and MLST for 199 nonreplicate clinical strains. The susceptibility of the strains toward the carbapenems and piperacillin-tazobactam was the lowest (≤90%), while ≥90% of the strains remained susceptible to all other classes of antimicrobial agents tested. The multidrug-resistant strains displayed high level resistance to cephalosporins (48 to ≥256 mg/L) and carbapenems (4-32 mg/L). Eleven strains harbored class 1 integrons containing blaGES-13, blaVIM-2, blaVIM-6, blaOXA-10, aacA(6')-Ib, aacA(6')-II, aadA6, and gcuD gene cassettes. Extra-integron genes, blaGES-20, blaIMP-4, blaVIM-2, and blaVIM-11, were also found. Overall, the maximum likelihood tree showed concordance in the clustering of strains having the same STs and PFGE clusters. ST708 was the predominant antibiotic-susceptible clone detected from the neonatal intensive care unit. The STs 235, 809, and 1076 clonal clusters consisted of multidrug resistant strains. ST235 is a recognized international high-risk clone. This is the first report of blaGES-13 and blaGES-20 ESBL-encoding gene variants and novel STs (STs 2329, 2335, 2337, 2338, 2340, and 2341) of P. aeruginosa in Malaysia.
    Matched MeSH terms: Pseudomonas Infections/microbiology*
  14. Popat R, Pollitt EJ, Harrison F, Naghra H, Hong KW, Chan KG, et al.
    Evolution, 2015 Sep;69(9):2371-83.
    PMID: 26282874 DOI: 10.1111/evo.12751
    Animals use signals to coordinate a wide range of behaviors, from feeding offspring to predator avoidance. This poses an evolutionary problem, because individuals could potentially signal dishonestly to coerce others into behaving in ways that benefit the signaler. Theory suggests that honest signaling is favored when individuals share a common interest and signals carry reliable information. Here, we exploit the opportunities offered by bacterial signaling to test these predictions with an experimental evolution approach. We show that: (1) reduced relatedness leads to the relative breakdown of signaling, (2) signaling breaks down by the invasion of mutants that show both reduced signaling and reduced response to signal, (3) the genetic route to signaling breakdown is variable, and (4) the addition of artificial signal, to interfere with signal information, also leads to reduced signaling. Our results provide clear support for signaling theory, but we did not find evidence for previously predicted coercion at intermediate relatedness, suggesting that mechanistic details can alter the qualitative nature of specific predictions. Furthermore, populations evolved under low relatedness caused less mortality to insect hosts, showing how signal evolution in bacterial pathogens can drive the evolution of virulence in the opposite direction to that often predicted by theory.
    Matched MeSH terms: Pseudomonas Infections/microbiology
  15. Raja NS, Singh NN
    J Microbiol Immunol Infect, 2007 Feb;40(1):45-9.
    PMID: 17332906
    BACKGROUND AND PURPOSE: Pseudomonas aeruginosa is an important cause of morbidity and mortality in hospitalized, critically ill patients and patients with underlying medical conditions such as cystic fibrosis, neutropenia, and iatrogenic immunosuppression. The prevalence of multiresistant P. aeruginosa isolates has been increasing. The aim of this study was to determine the antimicrobial susceptibility patterns in P. aeruginosa strains isolated at a university teaching hospital in Kuala Lumpur, Malaysia.
    METHODS: The Laboratory Information System of the microbiology department was retrospectively reviewed to determine the susceptibility patterns of P. aeruginosa isolates to anti-pseudomonal antibiotics, from January to June 2005. Disk diffusion methods were employed and results were interpreted according to National Committee for Clinical Laboratory Standards guidelines.
    RESULTS: 505 clinical isolates of P. aeruginosa were tested. Major sources of these isolates included respiratory tract, wound, urine and blood. The rates of antimicrobial resistance of isolates were 6.73% to amikacin, 12.9% to gentamicin, 10.1% to netilmicin, 10.9% to ceftazidime, 11.3% to ciprofloxacin, 9.9% to imipenem, 10.8% to piperacillin, 9.4% to piperacillin-tazobactam and 0% to polymyxin B. Of the 505 isolates, 29 (5.74%) were found to be multidrug-resistant; these were most commonly isolated from respiratory tract specimens of patients in surgical units, followed by respiratory tract specimens in patients in medical units.
    CONCLUSIONS: The data in this study showed low rates of antibiotic resistance among P. aeruginosa isolates. Combinations of aminoglycosides plus beta-lactams or quinolones should be the appropriate choice for empirical therapy in P. aeruginosa infections. Active antibiotic susceptibility testing and surveillance should be continued in order to curtail the problem of antibiotic resistance.
    Matched MeSH terms: Pseudomonas Infections/microbiology
  16. Ramanathan B, Jindal HM, Le CF, Gudimella R, Anwar A, Razali R, et al.
    PLoS One, 2017;12(8):e0182524.
    PMID: 28797043 DOI: 10.1371/journal.pone.0182524
    Rapid progress in next generation sequencing and allied computational tools have aided in identification of single nucleotide variants in genomes of several organisms. In the present study, we have investigated single nucleotide polymorphism (SNP) in ten multi-antibiotic resistant Pseudomonas aeruginosa clinical isolates. All the draft genomes were submitted to Rapid Annotations using Subsystems Technology (RAST) web server and the predicted protein sequences were used for comparison. Non-synonymous single nucleotide polymorphism (nsSNP) found in the clinical isolates compared to the reference genome (PAO1), and the comparison of nsSNPs between antibiotic resistant and susceptible clinical isolates revealed insights into the genome variation. These nsSNPs identified in the multi-drug resistant clinical isolates were found to be altering a single amino acid in several antibiotic resistant genes. We found mutations in genes encoding efflux pump systems, cell wall, DNA replication and genes involved in repair mechanism. In addition, nucleotide deletions in the genome and mutations leading to generation of stop codons were also observed in the antibiotic resistant clinical isolates. Next generation sequencing is a powerful tool to compare the whole genomes and analyse the single base pair variations found within the antibiotic resistant genes. We identified specific mutations within antibiotic resistant genes compared to the susceptible strain of the same bacterial species and these findings may provide insights to understand the role of single nucleotide variants in antibiotic resistance.
    Matched MeSH terms: Pseudomonas Infections/microbiology
  17. Subrayan V, Peyman M, Lek Yap S, Mohamed Ali NA, Devi S
    Eye Contact Lens, 2010 Jul;36(4):201-3.
    PMID: 20531205 DOI: 10.1097/ICL.0b013e3181e3efa3
    PURPOSE: The aim of this study is to evaluate the role of real-time polymerase chain reaction (PCR) and conventional bacterial culture methods in the detection of Pseudomonas aeruginosa in contact lens-induced severe, partially treated corneal ulcers referred to a tertiary center.
    METHODS: The study duration was 6 months. All patients with contact lens-related corneal ulcer, requiring admission during the study period were recruited. Samples from corneal scrapings were simultaneously sent at the time of admission for PCR and culture testing. An in-house real-time PCR was developed to detect the P. aeruginosa lasA gene. The results of PCR and culture were compared using McNemar's chi2 test.
    RESULTS: Ten patients were recruited. The mean age was 33 years (20-45 years). All the patients had contact lens-related keratitis (>4 mm) of which eight (80%) were found positive for P. aeruginosa by PCR or culture. There was no significant difference between PCR and culture in detecting P. aeruginosa (P<0.05).
    CONCLUSIONS: PCR is, at least, as good as conventional cultures in detecting P. aeruginosa. It is a rapid assay as compared with culture, and early detection enables prompt treatment thus reducing the destructive effect of the organism on the cornea.
    Matched MeSH terms: Pseudomonas Infections/microbiology
  18. Swathirajan CR, Rameshkumar MR, Solomon SS, Vignesh R, Balakrishnan P
    J Glob Antimicrob Resist, 2019 03;16:274-277.
    PMID: 30389636 DOI: 10.1016/j.jgar.2018.10.019
    OBJECTIVES: Pseudomonas aeruginosa is an important aetiological agent causing pneumonia, urinary tract infections and bacteraemia. High antibiotic use in nosocomial settings and for immunocompromised conditions results in increasing multidrug resistance. This study analysed the antimicrobial resistance profile of P. aeruginosa isolates in an HIV setting.

    METHODS: A total of 7386 clinical specimens were collected from HIV patients attending YRG CARE from 2010-2017. P. aeruginosa isolated from clinical specimens were identified conventionally, and antimicrobial susceptibility testing was performed by the Kirby-Bauer disk diffusion method.

    RESULTS: A total of 260 P. aeruginosa strains were isolated, with 165 P. aeruginosa (63.5%) being isolated from hospitalised patients. A higher incidence of P. aeruginosa infection (25.8%) was observed in 2017, and most of the P. aeruginosa were isolated from sputum specimens (57.3%). A high level of resistance was noted to ceftazidime (49.6%), followed by ticarcillin (41.5%). Imipenem and meropenem resistance was observed in 15.0% and 16.9% of P. aeruginosa isolates, respectively. A high rate of imipenem resistance was noted in 2016 (46.2%) and a high rate of meropenem resistance was noted in 2017 (20.5%). An increasing resistance rate of P. aeruginosa was observed against aztreonam, cefepime, levofloxacin, meropenem, piperacillin, piperacillin/tazobactam, ticarcillin and tobramycin from 2010 to 2017.

    CONCLUSION: A constant increase in drug-resistant P. aeruginosa isolates from HIV patients was observed from 2010 to 2017. Findings from this study urge the need for periodical monitoring and surveillance of the P. aeruginosa resistance profile, especially in hospitalised and immunocompromised patients in resource-limited settings.

    Matched MeSH terms: Pseudomonas Infections/microbiology*
  19. Thong KL, Lai KS, Ganeswrie R, Puthucheary SD
    Jpn J Infect Dis, 2004 Oct;57(5):206-9.
    PMID: 15507777
    Over a period of 6 months from January to June 2002, an unusual increase in the isolation of highly resistant Pseudomonas aeruginosa strains was observed in the various wards and intensive care units of a large general hospital in Johor Bahru, Malaysia. An equal number of multidrug resistant (MDR) and drug-susceptible strains were collected randomly from swabs, respiratory specimens, urine, blood, cerebral spinal fluid, and central venous catheters to determine the clonality and genetic variation of the strains. Macrorestriction analysis by pulsed-field gel electrophoresis showed that the 19 MDR strains were genetically very homogenous; the majority showed the dominant profile S1 (n = 10), the rest very closely related profiles S1a (n = 1), S2 (n = 4), and S2a (n = 3), indicating the endemicity of these strains. In contrast, the 19 drug-sensitive strains isolated during the same time period were genetically more diverse, showing 17 pulsed-field profiles (F = 0.50-1.00), and probably derived from the patients themselves. The presence of the MDR clone poses serious therapeutic problems as it may become endemic in the hospital and give rise to future clonal outbreaks. There is also the potential for wider geographical spread.
    Matched MeSH terms: Pseudomonas Infections/microbiology*
  20. Thong ML
    PMID: 1025737
    Three strains of Pseudomonas putrefaciens were isolated from routine clinical specimens at the University Hospital, Kuala Lumpur, Malaysia. Their cultural and biochemical characteristic, and antibiotic susceptibilities are presented. Characteristics of diagnostic value were stressed. Two isolates appeared to have played a pathogenic role in chronic otitis media.
    Matched MeSH terms: Pseudomonas Infections/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links