Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Ko WC, Stone GG
    Ann Clin Microbiol Antimicrob, 2020 Apr 01;19(1):14.
    PMID: 32238155 DOI: 10.1186/s12941-020-00355-1
    BACKGROUND: Antimicrobial resistance among nosocomial Gram-negative pathogens is a cause for concern in the Asia-Pacific region. The aims of this study were to measure the rates of resistance among clinical isolates collected in Asia-Pacific countries, and to determine the in vitro antimicrobial activities of ceftazidime-avibactam and comparators against these isolates.

    METHODS: CLSI broth microdilution methodology was used to determine antimicrobial activity and EUCAST breakpoints version 9.0 were used to determine rates of susceptibility and resistance. Isolates were also screened for the genes encoding extended-spectrum β-lactamases (ESBLs) or carbapenemases (including metallo-β-lactamases [MBLs]).

    RESULTS: Between 2015 and 2017, this study collected a total of 7051 Enterobacterales isolates and 2032 Pseudomonas aeruginosa isolates from hospitalized patients in Australia, Japan, South Korea, Malaysia, the Philippines, Taiwan, and Thailand. In the Asia-Pacific region, Enterobacterales isolates that were ESBL-positive, carbapenemase-negative (17.9%) were more frequently identified than isolates that were carbapenemase-positive, MBL-negative (0.7%) or carbapenemase-positive, MBL-positive (1.7%). Multidrug-resistant (MDR) isolates of P. aeruginosa were more commonly identified (23.4%) than isolates that were ESBL-positive, carbapenemase-negative (0.4%), or carbapenemase-positive, MBL-negative (0.3%), or carbapenemase-positive, MBL-positive (3.7%). More than 90% of all Enterobacterales isolates, including the ESBL-positive, carbapenemase-negative subset and the carbapenemase-positive, MBL-negative subset, were susceptible to amikacin and ceftazidime-avibactam. Among the carbapenemase-positive, MBL-positive subset of Enterobacterales, susceptibility to the majority of agents was reduced, with the exception of colistin (93.4%). Tigecycline was active against all resistant subsets of the Enterobacterales (MIC90, 1-4 mg/L) and among Escherichia coli isolates, > 90% from each resistant subset were susceptible to tigecycline. More than 99% of all P. aeruginosa isolates, including MDR isolates and the carbapenemase-positive, MBL-positive subset, were susceptible to colistin.

    CONCLUSIONS: In this study, amikacin, ceftazidime-avibactam, colistin and tigecycline appear to be potential treatment options for infections caused by Gram-negative pathogens in the Asia-Pacific region.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  2. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob Agents Chemother, 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  3. Ho SE, Subramaniam G, Palasubramaniam S, Navaratnam P
    Antimicrob Agents Chemother, 2002 Oct;46(10):3286-7.
    PMID: 12234862
    We have isolated and identified a carbapenem-resistant Pseudomonas aeruginosa strain from Malaysia that produces an IMP-7 metallo-beta-lactamase. This isolate showed high-level resistance to meropenem and imipenem, the MICs of which were 256 and 128 micro g/ml, respectively. Isoelectric focusing analyses revealed pI values of >9.0, 8.2, and 7.8, which indicated the possible presence of IMP and OXA. DNA sequencing confirmed the identity of the IMP-7 determinant.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  4. Chia PY, Sengupta S, Kukreja A, S L Ponnampalavanar S, Ng OT, Marimuthu K
    PMID: 32046775 DOI: 10.1186/s13756-020-0685-1
    Infections by multidrug-resistant (MDR) Gram-negative organisms (GN) are associated with a high mortality rate and present an increasing challenge to the healthcare system worldwide. In recent years, increasing evidence supports the association between the healthcare environment and transmission of MDRGN to patients and healthcare workers. To better understand the role of the environment in transmission and acquisition of MDRGN, we conducted a utilitarian review based on literature published from 2014 until 2019.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  5. Zainol MI, Mohd Yusoff K, Mohd Yusof MY
    PMID: 23758747 DOI: 10.1186/1472-6882-13-129
    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  6. Khoo YT, Halim AS, Singh KK, Mohamad NA
    PMID: 20815896 DOI: 10.1186/1472-6882-10-48
    Full-thickness burn wounds require excision and skin grafting. Multiple surgical procedures are inevitable in managing moderate to severe full-thickness burns. Wound bed preparations prior to surgery are necessary in order to prevent wound infection and promote wound healing. Honey can be used to treat burn wounds. However, not all the honey is the same. This study aims to evaluate the wound contraction and antibacterial properties of locally-produced Tualang honey on managing full-thickness burn wounds in vivo.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  7. Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL
    BMC Microbiol, 2017 Feb 16;17(1):36.
    PMID: 28209130 DOI: 10.1186/s12866-017-0936-3
    BACKGROUND: Antimicrobial resistance is currently a major global issue. As the rate of emergence of antimicrobial resistance has superseded the rate of discovery and introduction of new effective drugs, the medical arsenal now is experiencing shortage of effective drugs to combat diseases, particularly against diseases caused by the dreadful multidrug-resistant strains, such as the methicillin-resistant Staphylococcus aureus (MRSA). The ability of fly larvae to thrive in septic habitats has prompted us to determine the antibacterial activity and minimum inhibitory concentrations (MICs) of larval extract of flies, namely Lucilia cuprina, Sarcophaga peregrina and Musca domestica against 4 pathogenic bacteria [Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa and Escherichia coli] via a simple and sensitive antibacterial assay, resazurin-based turbidometric (TB) assay as well as to demonstrate the preliminary chemical profile of larval extracts using gas chromatography-mass spectrophotometry (GC-MS).

    RESULTS: The resazurin-based TB assay demonstrated that the L. cuprina larval extract was inhibitory against all tested bacteria, whilst the larval extract of S. peregrina and M. domestica were only inhibitory against the MRSA, with a MIC of 100 mg ml(-1). Subsequent sub-culture of aliquots revealed that the larval extract of L. cuprina was bactericidal against MRSA whilst the larval extracts of S. peregrina and M. domestica were bacteriostatic against MRSA. The GC-MS analysis had quantitatively identified 20 organic compounds (fatty acids or their derivatives, aromatic acid esters, glycosides and phenol) from the larval extract of L. cuprina; and 5 fatty acid derivatives with known antimicrobial activities from S. peregrina and M. domestica.

    CONCLUSION: The resazurin-based turbidometric assay is a simple, reliable and feasible screening assay which evidently demonstrated the antibacterial activity of all fly larval extracts, primarily against the MRSA. The larval extract of L. cuprina exerted a broad spectrum antibacterial activity against all tested bacteria. The present study revealed probable development and use of novel and effective natural disinfectant(s) and antibacterial agent(s) from flies and efforts to screen more fly species for antibacterial activity using resazurin-based TB assay should be undertaken for initial screening for subsequent discovery and isolation of potential novel antimicrobial substances, particularly against the multi-drug resistant strains.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  8. Hamzah N, Kasmuri N, Tao W, Singhal N, Padhye L, Swift S
    Braz J Microbiol, 2020 Sep;51(3):1317-1326.
    PMID: 32399689 DOI: 10.1007/s42770-020-00295-0
    Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  9. Teerawattanapong N, Kengkla K, Dilokthornsakul P, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N
    Clin Infect Dis, 2017 May 15;64(suppl_2):S51-S60.
    PMID: 28475791 DOI: 10.1093/cid/cix112
    Background: This study evaluated the relative efficacy of strategies for the prevention of multidrug-resistant gram-negative bacteria (MDR-GNB) in adult intensive care units (ICUs).

    Methods: A systematic review and network meta-analysis was performed; searches of the Cochrane Library, PubMed, Embase, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) included all randomized controlled trials and observational studies conducted in adult patients hospitalized in ICUs and evaluating standard care (STD), antimicrobial stewardship program (ASP), environmental cleaning (ENV), decolonization methods (DCL), or source control (SCT), simultaneously. The primary outcomes were MDR-GNB acquisition, colonization, and infection; secondary outcome was ICU mortality.

    Results: Of 3805 publications retrieved, 42 met inclusion criteria (5 randomized controlled trials and 37 observational studies), involving 62068 patients (median age, 58.8 years; median APACHE [Acute Physiology and Chronic Health Evaluation] II score, 18.9). The majority of studies reported extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and MDR Acinetobacter baumannii. Compared with STD, a 4-component strategy composed of STD, ASP, ENV, and SCT was the most effective intervention (rate ratio [RR], 0.05 [95% confidence interval {CI}, .01-.38]). When ENV was added to STD+ASP or SCT was added to STD+ENV, there was a significant reduction in the acquisition of MDR A. baumannii (RR, 0.28 [95% CI, .18-.43] and 0.48 [95% CI, .35-.66], respectively). Strategies with ASP as a core component showed a statistically significant reduction the acquisition of ESBL-producing Enterobacteriaceae (RR, 0.28 [95% CI, .11-.69] for STD+ASP+ENV and 0.23 [95% CI, .07-.80] for STD+ASP+DCL).

    Conclusions: A 4-component strategy was the most effective intervention to prevent MDR-GNB acquisition. As some strategies were differential for certain bacteria, our study highlighted the need for further evaluation of the most effective prevention strategies.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  10. Lee ML, Tan NH, Fung SY, Sekaran SD
    PMID: 21059402 DOI: 10.1016/j.cbpc.2010.11.001
    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  11. Chung PY
    Curr Drug Targets, 2017;18(4):414-420.
    PMID: 27758704 DOI: 10.2174/1389450117666161019102025
    Pseudomonas aeruginosa is the most common Gram-negative bacterium associated with nosocomial and life-threatening chronic infections in cystic fibrosis patients. This pathogen is wellknown for its ability to attach to surfaces of indwelling medical devices to form biofilms, which consist of a regular array of extracellular polymers. Tenaciously bound to the surface of devices and inherently resilient to antibiotic treatment, P. aeruginosa poses a serious threat in clinical medicine and contributes to the persistence of chronic infections. Studies on microbial biofilms in the past decade involved mainly the understanding of environment signals, genetic elements and molecular mechanisms in biofilm formation, tolerance and dispersal. The knowledge obtained from the studies of these mechanisms is crucial in the establishment of strategies to eradicate or to prevent biofilm formation. Currently, biofilm infections are usually treated with combinations of antibiotics and surgical removal, in addition to frequent replacement of the infected device. More recently, specific natural sources have been identified as antibiofilm agents against this pathogen. This review will highlight the recent progress made by plant-derived compounds against P. aeruginosa biofilm infections in both in vitro or in vivo models.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  12. Winnie FYM, Siddiqui R, Sagathevan K, Khan NA
    Curr Pharm Biotechnol, 2020;21(5):425-437.
    PMID: 31577204 DOI: 10.2174/1389201020666191002153435
    BACKGROUND: Snakes feed on germ-infested rodents, while water monitor lizards thrive on rotten matter in unhygienic conditions. We hypothesize that such creatures survive the assault of superbugs and are able to fend off disease by producing antimicrobial substances. In this study, we investigated the potential antibacterial activity of sera/lysates of animals living in polluted environments.

    METHODS: Snake (Reticulatus malayanus), rats (Rattus rattus), water monitor lizard (Varanus salvator), frog (Lithobates catesbeianus), fish (Oreochromis mossambicus), chicken (Gallus gallus domesticus), and pigeon (Columba livia) were dissected and their organ lysates/sera were collected. Crude extracts were tested for bactericidal effects against neuropathogenic E. coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus cereus and Klebsiella pneumoniae. To determine whether lysates/sera protect human cells against bacterialmediated damage, cytotoxicity assays were performed by measuring lactate dehydrogenase release as an indicator of cell death. Lysates/sera were partially characterized using heat-treatment and pronasetreatment and peptide sequences were determined using the Liquid Chromatography Mass Spectrometry (LC-MS).

    RESULTS: Snake and water monitor lizard sera exhibited potent broad-spectrum bactericidal effects against all bacteria tested. Heat inactivation and pronase-treatment inhibited bactericidal effects indicating that activity is heat-labile and pronase-sensitive suggesting that active molecules are proteinaceous in nature. LCMS analyses revealed the molecular identities of peptides.

    CONCLUSION: The results revealed that python that feeds on germ-infested rodents and water monitor lizards that feed on rotten organic waste possess antibacterial activity in a heat-sensitive manner and several peptides were identified. We hope that the discovery of antibacterial activity in the sera of animals living in polluted environments will stimulate research in finding antibacterial agents from unusual sources as this has the potential for the development of novel strategies in the control of infectious diseases.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  13. Ismail NS, Subbiah SK, Taib NM
    Curr Pharm Biotechnol, 2020;21(14):1539-1550.
    PMID: 32598252 DOI: 10.2174/1389201021666200629145217
    BACKGROUND: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism.

    METHODS: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog).

    RESULTS AND DISCUSSION: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid.

    CONCLUSION: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.

    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  14. Khosravi Y, Tee Tay S, Vadivelu J
    Diagn Microbiol Infect Dis, 2010 Jul;67(3):294-6.
    PMID: 20462725 DOI: 10.1016/j.diagmicrobio.2010.02.010
    Ninety (n = 90) imipenem-resistant Pseudomonas aeruginosa (IRPA) clinical isolates collected randomly during 2005 to 2008 from University Malaya Medical Center were assessed for the presence of different variants of metallo-beta-lactamase (MBL) genes. Polymerase chain reaction (PCR) assay detected 32 (n = 32) MBL gene PCR-positive isolates with the presence of bla(IMP) gene in 14 (n = 14) and bla(VIM) in 18 (n = 18) isolates. Four allelic variants, bla(IMP-7) (12 isolates), bla(IMP-4) (2 isolates), bla(VIM-2) (17 isolates), and bla(VIM-11) (1 isolate), of MBL genes were identified. This study is the first report of detection of bla(IMP-4), bla(VIM-2), and bla(VIM-11) MBL genes from IRPA clinical isolates in Malaysia.

    Study site: University Malaya Medical Center (UMMC)
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  15. Chew YK, Cheong JP, Ramesh N, Noorafidah MD, Brito-Mutunayagam S, Khir A, et al.
    Ear Nose Throat J, 2014 Jun;93(6):E5-8.
    PMID: 24932831
    We conducted a retrospective observational study to determine the spectrum and antibiotic sensitivity pattern of organisms isolated in otorhinolaryngologic (ORL) infections. We reviewed the laboratory culture and sensitivity records of 4,909 patients-2,773 males (56.5%) and 2,136 females (43.5%), aged 2 to 90 years (mean: 45.3 ± 12.6)-who had been seen at two government hospitals in Malaysia. Of this group, 4,332 patients had a respiratory tract infection (88.2%), 206 had an ear infection (4.2%), 188 had a deep neck infection (3.8%), and 183 had an oropharyngeal infection (3.7%). The most common isolated organisms were Klebsiella spp, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, methicillin-susceptible S aureus, coagulase-negative S aureus, and Acinetobacter baumannii. We also identified the antimicrobial susceptibility of these organisms. We conclude that since the spectrum of causative pathogens in some infections differs between tropical and nontropical areas of the world, tropical hospitals should not completely adopt the antibiotic guidelines for ORL infections that have been recommended for hospitals in nontropical regions. We hope that our review and analysis of local data will help practitioners in Malaysia develop an appropriate prescribing policy with respect to ORL pathogens and antimicrobial susceptibility. The goal is to reduce the morbidity and mortality associated with these infections.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  16. Williams JD, Moosdeen F, Teoh-Chan CH, Lim VK, Jayanetra P
    Eur J Epidemiol, 1989 Jun;5(2):207-13.
    PMID: 2504618
    Antibiotic resistance in Gram-negative bacteria, particularly Salmonella and Shigella, requires surveillance worldwide. This study describes results of surveys in Hong Kong, Bangkok and Kuala Lumpur. All strains were isolated in hospitals which have large community catchment areas in addition to specialised hospital units. The prevalence of resistant strains was high in all areas. Gram-negative bacteria such as Enterobacter associated with hospital infections were resistant to penicillins and cephalosporins, with gentamicin resistance ranging from about 20% in Kuala Lumpur and Hong Kong, to 35% in Bangkok. Ninety-seven percent of Shigella isolated in Thailand were resistant to ampicillin. About 10% of Salmonella were resistant to chloramphenicol in all three centres.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  17. Khosravi Y, Tay ST, Vadivelu J
    Eur Rev Med Pharmacol Sci, 2010 Nov;14(11):999-1000.
    PMID: 21284350
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  18. Abjani F, Khan NA, Jung SY, Siddiqui R
    Exp Parasitol, 2017 Dec;183:187-193.
    PMID: 28919333 DOI: 10.1016/j.exppara.2017.09.007
    The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept®, AO SEPT PLUS, OPTI-FREE® pure moist®, Renu® fresh™, FreshKon® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These findings revealed that targeting cyst wall by using cyst wall degrading molecules in contact lens disinfecting solutions will enhance their efficacy against this devastating eye infection.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects
  19. Yong YY, Ong MWK, Dykes G, Choo WS
    FEMS Microbiol Lett, 2021 01 26;368(1).
    PMID: 33338235 DOI: 10.1093/femsle/fnaa214
    Staphylococcus aureus and Pseudomonas aeruginosa are bacteria that cause biofilm-associated infections. The aim of this study was to determine the activity of combined betacyanin fractions from Amaranthus dubius (red spinach) and Hylocereus polyrhizus (red pitahaya) against biofilms formed by co-culture of S. aureus and P. aeruginosa on different polymer surfaces. Various formulations containing different concentrations of the betacyanin fractions were investigated for biofilm-inhibiting activity on polystyrene surfaces using crystal violet assay and scanning electron microscopy. A combination of each betacyanin fraction (0.625 mg mL-1) reduced biofilm formation of five S. aureus strains and four P. aeruginosa strains from optical density values of 1.24-3.84 and 1.25-3.52 to 0.81-2.63 and 0.80-1.71, respectively. These combined fractions also significantly inhibited dual-species biofilms by 2.30 and reduced 1.0-1.3 log CFU cm-2 bacterial attachment on polymer surfaces such as polyvinyl chloride, polyethylene, polypropylene and silicone rubber. This study demonstrated an increase in biofilm-inhibiting activity against biofilms formed by two species using combined fractions than that by using single fractions. Betacyanins found in different plants could collectively be used to potentially decrease the risk of biofilm-associated infections caused by these bacteria on hydrophobic polymers.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
  20. Yahya MFZR, Alias Z, Karsani SA
    Folia Microbiol (Praha), 2018 Jan;63(1):23-30.
    PMID: 28540585 DOI: 10.1007/s12223-017-0532-9
    Biofilms are complex microbial communities that tend to attach to either biotic or abiotic surface. Enclosed in a self-produced extracellular polymeric substance (EPS) matrix, the biofilms often cause persistent infections. The objective of this study was to investigate the antibiofilm activity of dimethyl sulfoxide (DMSO) and afatinib against Gram-negative pathogens. Test microorganisms used in this study were Escherichia coli ATCC 1299, Pseudomonas aeruginosa ATCC 10145, and Salmonella typhimurium ATCC 14028. Biofilms were developed in 96-well microplate at 37°C for 24 h. Following removal of non-adherent cells, analysis of biofilm viability, biofilm biomass, and extracellular polymeric substances (EPS) matrix were performed using resazurin assay, crystal violet assay, and attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Bradford protein assay was conducted to determine the total amount of EPS proteins. The results demonstrated that both 32% DMSO alone and its combination with 3.2 μg/mL afatinib were effective in killing biofilm cells and reducing biofilm biomass. IR spectral variations of EPS matrix of biofilms in the range between 1700 and 900 cm-1 were also observed. Reduction in EPS proteins verified the chemical modifications of EPS matrix. In conclusion, 32% DMSO alone and its combination with 3.2 μg/mL afatinib showed remarkable antibiofilm activities against Gram-negative pathogens. It was suggested that the biofilm inhibition was mediated by the chemical modification of EPS matrix.
    Matched MeSH terms: Pseudomonas aeruginosa/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links