Displaying all 12 publications

Abstract:
Sort:
  1. Balmas V, Corda P, Marcello A, Bottalico A
    Plant Dis, 2000 Jul;84(7):807.
    PMID: 30832117 DOI: 10.1094/PDIS.2000.84.7.807B
    Fusarium nygamai Burgess & Trimboli was first described in 1986 in Australia (1) and subsequently reported in Africa, China, Malaysia, Thailand, Puerto Rico, and the United States. F. nygamai has been reported on sorghum, millet, bean, cotton, and in soil where it exists as a colonizer of living plants or plant debris. F. nygamai was also reported as a pathogen of the witch-weed Striga hermonthica (Del.) Benth. To our knowledge, no reports are available on its pathogenicity on crops of economic importance. In a survey of species of Fusarium causing seedling blight and foot rot of rice (Oryza sativa L.) carried out in Sardinia (Oristano, S. Lucia), F. nygamai was isolated in association with other Fusarium species-F. moniliforme, F. proliferatum, F. oxysporum, F. solani, F. compactum, and F. equiseti. Infected seedlings exhibited a reddish brown cortical discoloration, which was more intense in older plants. The identification of F. nygamai was based on monoconidial cultures grown on carnation leaf-piece agar (CLA) (2). The shape of macroconidia, the formation of microconidia in short chains and false heads, and the presence of chlamydospores were used as the criteria for identification. Two pathogenicity tests comparing one isolate of F. nygamai with one isolate of F. moniliforme were conducted on rice cv. Arborio sown in artificially infested soil in a greenhouse at 22 to 25°C. The inoculum was prepared by growing both Fusarium species in cornmeal sand (1:30 wt/wt) at 25°C for 3 weeks. This inoculum was added to soil at 20 g per 500 ml of soil. Pre- and post-emergence damping-off was assessed. Both F. nygamai and F. moniliforme reduced the emergence of seedlings (33 to 59% and 25 to 50%, respectively, compared to uninoculated control). After 25 days, the seedlings in infested soil exhibited a browning of the basal leaf sheaths, which progressed to a leaf and stem necrosis. Foot rot symptoms caused by F. nygamai and F. moniliforme were similar, but seedlings infected by F. nygamai exhibited a more intense browning on the stem base and a significant reduction of plant height at the end of the experiment. Either F. nygamai or F. moniliforme were consistently isolated from symptomatic tissue from the respective treatments. References: (1) L. W. Burgess and D. Trimboli. Mycologia 78:223,1986. (2) N. L. Fisher et al. Phytopathology 72:151,1982.
    Matched MeSH terms: Puerto Rico
  2. FREEDMAN R
    Proc. R. Soc. Lond., B, Biol. Sci., 1963 Dec 10;159:220-45.
    PMID: 14087992 DOI: 10.1098/rspb.1963.0074
    Matched MeSH terms: Puerto Rico
  3. Polter SJ, Caraballo AA, Lee YP, Eng WW, Gan HM, Wheatley MS, et al.
    Genome Announc, 2015;3(4).
    PMID: 26227604 DOI: 10.1128/genomeA.00847-15
    Here, we report the isolation, identification, whole-genome sequencing, and annotation of four Bacillus species from internal stem tissue of the insulin plant Costus igneus, grown in Puerto Rico. The plant is of medicinal importance, as extracts from its leaves have been shown to lower blood sugar levels of hyperglycemic rats.
    Matched MeSH terms: Puerto Rico
  4. Rossman AY, Goenaga R, Keith L
    Plant Dis, 2007 Dec;91(12):1685.
    PMID: 30780638 DOI: 10.1094/PDIS-91-12-1685C
    A stem canker disease on rambutan (Nephelium lappaceum L.) and litchi (Litchi chinensis Sonn. (Sapindaceae) was found in plants in Hawaii and Puerto Rico. A fungus associated with cankers was identified as Dolabra nepheliae C. Booth & Ting (1). Numerous black, stipitate, elongate ascomata were produced within cracks of cankers. These ascomata contain elongate, bitunicate asci amid unbranched, interthecial elements and thin, cylindrical, hyaline ascospores measuring 96 to 136 × 2.5 to 3.5 μm. This fungus was originally described from Malaysia on N. lappaceum (1) and is also known on pulasan (N. mutabile Blume) in Australia (2). Classified by the Food and Agriculture Organization as a 'minor disease', the canker appears to be relatively common in Hawaii and was most likely introduced into Puerto Rico on imported germplasm. Nevertheless, efforts are underway to study the potential damage of this disease as well as mechanisms of control, including introduction of disease resistant clones. Specimens have been deposited at the U.S. National Fungus Collections (Hawaii on Nephelium BPI 878189, Puerto Rico (PR) on Nephelium BPI 878188, and PR on Litchi BPI 878190). Although a specimen of D. nepheliae on L. chinensis was collected from Hawaii in 1984 by G. Wong and C. Hodges and deposited as BPI 626373, this fungus was not known on Nephelium spp. in Hawaii and was not previously known from Puerto Rico on either host. References: (1) C. Booth and W. P. Ting. Trans. Brit. Mycol. Soc. 47:235, 1964. (2) T. K. Lim and Y. Diczbalis. Rambutan. Page 306 in: The New Rural Industries. Online publication. Rural Industries Research and Development Corporation, Australia, 1997.
    Matched MeSH terms: Puerto Rico
  5. Jenkins TM, Jones SC, Lee CY, Forschler BT, Chen Z, Lopez-Martinez G, et al.
    Mol Phylogenet Evol, 2007 Mar;42(3):612-21.
    PMID: 17254806
    Coptotermes gestroi, the Asian subterranean termite (AST), is an economically important structural and agricultural pest that has become established in many areas of the world. For the first time, phylogeography was used to illuminate the origins of new found C. gestroi in the US Commonwealth of Puerto Rico; Ohio, USA; Florida, USA; and Brisbane, Australia. Phylogenetic relationships of C. gestroi collected in indigenous locations within Malaysia, Thailand, and Singapore as well as from the four areas of introduction were investigated using three genes (16S rRNA, COII, and ITS) under three optimality criteria encompassing phenetic and cladistic assumptions (maximum parsimony, maximum likelihood, and neighbor-joining). All three genes showed consistent support for a close genetic relationship between C. gestroi samples from Singapore and Ohio, whereas termite samples from Australia, Puerto Rico, and Key West, FL were more closely related to those from Malaysia. Shipping records further substantiated that Singapore and Malaysia were the likely origin of the Ohio and Australia C. gestroi, respectively. These data provide support for using phylogeography to understand the dispersal history of exotic termites. Serendipitously, we also gained insights into concerted evolution in an ITS cluster from rhinotermitid species in two genera.
    Matched MeSH terms: Puerto Rico
  6. Yun SI, Song BH, Frank JC, Julander JG, Polejaeva IA, Davies CJ, et al.
    Genome Announc, 2016;4(4).
    PMID: 27540058 DOI: 10.1128/genomeA.00800-16
    Here, we report the 10,807-nucleotide-long consensus RNA genome sequences of three spatiotemporally distinct and genetically divergent Zika virus strains, with the functionality of their genomic sequences substantiated by reverse genetics: MR-766 (African lineage, Uganda, 1947), P6-740 (Asian lineage, Malaysia, 1966), and PRVABC-59 (Asian lineage-derived American strain, Puerto Rico, 2015).
    Matched MeSH terms: Puerto Rico
  7. Lombardo E
    Genus, 1983 Jan-Dec;39(1-4):167-73.
    PMID: 12266118
    "A tentative approximation of the expectation of life at 60-65 years, for populations with defective demographic statistics, is explored and expounded on the basis of a recent Horiuchi and [Coale] paper." The method is applied to data for El Salvador, Mexico, Puerto Rico, and Peninsular Malaysia, and it is shown that the method can be used on actual data, although it requires some drastic rounding off. (summary in ENG, FRE)
    Matched MeSH terms: Puerto Rico
  8. Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, et al.
    PLoS Biol, 2008 Mar 04;6(3):e45.
    PMID: 18318600 DOI: 10.1371/journal.pbio.0060045
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.
    Matched MeSH terms: Puerto Rico
  9. Keith LM, Matsumoto TK, McQuate GT
    Plant Dis, 2013 Jul;97(7):990.
    PMID: 30722533 DOI: 10.1094/PDIS-09-12-0886-PDN
    In January 2011, branch samples were collected from langsat (Lansium domesticum Corr.), a fruit from Southeast Asia with an expanding niche market in Hawaii, exhibiting corky bark symptoms similar to that found on rambutan (Nephelium lappaceum) and litchi (Litchi chinensis) (3). The orchard, located along the Hamakua Coast of Hawaii Island, had 5- to 10-year-old trees, all with corky bark symptoms. As the trees matured, the cankers increased in size and covered the branches and racemes, often resulting in little to no fruit production. Scattered along the infected bark tissue were elongated, black ascomata present in the cracks. Ascomata were removed from the cracks using a scalpel blade, placed at the edge of a water agar petri dish and gently rolled along the agar surface to remove bark tissue and other debris. Individual ascomata were placed in 10-μl drops of 10% sodium hypochlorite on fresh water agar for 20 s, removed, and placed on potato dextrose agar petri dishes amended with 25 μg/ml streptomycin. The isolates were kept at 24°C under continuous fluorescent lighting. After 9 days, black pycnidia were present, which produced smooth, hyaline, linear to curved, filiform conidia, 4 to 6 septate (mostly 6), 31.8 to 70.1 × 2.0 to 2.8 μm. The morphological descriptions and measurements were similar to those reported for Dolabra nepheliae (3). The nucleotide sequence of the internal transcribed spacer (ITS) region including ITS1, 5.8S, and ITS2 intergenic spacers was determined for strain P11-1-1and a BLAST analysis of the sequence (GenBank Accession No. JX566449) revealed 99% similarity (586/587 bp) with the sequence of D. nepheliae strain BPI 882442 on N. lappaceum from Honduras. Based on morphology and ITS sequencing, the fungus associated with the cankers was identified as the same causal agent reported on rambutan and pulasan (N. mutabile) from Malaysia (1), and later reported on rambutan and litchi in Hawaii and Puerto Rico (3). Upon closer observations of the diseased samples, sections of corky bark contained at least two larval insects. The beetles were identified as Corticeus sp. (Coleoptera: Tenebrionidae) and Araecerus sp. (Coleoptera: Anthribidae) by the USDA-ARS Systematic Entomology Laboratory (Beltsville, MD). A corky bark disease on the trunk and larger limbs of mature langsat trees in Florida was thought to be caused by Cephalosporium sp. with larvae (Lepidoptera: Tineidae) feeding on the diseased tissue (2). It is not known the extent to which either of the beetle species is associated with L. domesticum in Hawaii or if they play a role in the bark disorder. To our knowledge, this is the first report of Dolabra nepheliae being found on langsat in Hawaii. Effective management practices should be established to avoid potential production losses or spreading the disease to alternative hosts. References: (1) C. Booth and W. P. Ting. Trans. Brit. Mycol. Soc. 47:235, 1964. (2) J. Morton. Langsat. In: Fruits of Warm Climates, p. 201-203. Julia F. Morton, Miami, FL, 1987. (3) A. Y. Rossman et al. Plant Dis. 91:1685, 2007.
    Matched MeSH terms: Puerto Rico
  10. Posos-Parra O, Mota-Sanchez D, Pittendrigh BR, Wise JC, DiFonzo CD, Patterson E
    PLoS One, 2024;19(2):e0295928.
    PMID: 38394153 DOI: 10.1371/journal.pone.0295928
    The fall armyworm (Spodoptera frugiperda) is one of the most destructive pests of corn. New infestations have been reported in the East Hemisphere, reaching India, China, Malaysia, and Australia, causing severe destruction to corn and other crops. In Puerto Rico, practical resistance to different mode of action compounds has been reported in cornfields. In this study, we characterized the inheritance of resistance to chlorantraniliprole and flubendiamide and identified the possible cross-resistance to cyantraniliprole and cyclaniliprole. The Puerto Rican (PR) strain showed high levels of resistance to flubendiamide (RR50 = 2,762-fold) and chlorantraniliprole (RR50 = 96-fold). The inheritance of resistance showed an autosomal inheritance for chlorantraniliprole and an X-linked inheritance for flubendiamide. The trend of the dominance of resistance demonstrated an incompletely recessive trait for H1 (♂ SUS × ♀ PR) × and an incompletely dominant trait for H2 (♀ SUS × ♂ PR) × for flubendiamide and chlorantraniliprole. The PR strain showed no significant presence of detoxification enzymes (using synergists: PBO, DEF, DEM, and VER) to chlorantraniliprole; however, for flubendiamide the SR = 2.7 (DEM), SR = 3.2 (DEF) and SR = 7.6 (VER) indicated the role of esterases, glutathione S- transferases and ABC transporters in the metabolism of flubendiamide. The PR strain showed high and low cross-resistance to cyantraniliprole (74-fold) and cyclaniliprole (11-fold), respectively. Incomplete recessiveness might lead to the survival of heterozygous individuals when the decay of diamide residue occurs in plant tissues. These results highlight the importance of adopting diverse pest management strategies, including insecticide rotating to manage FAW populations in Puerto Rico and other continents.
    Matched MeSH terms: Puerto Rico
  11. Rossman A, Melgar J, Walker D, Gonzales A, Ramirez T, Rivera J
    Plant Dis, 2012 May;96(5):765.
    PMID: 30727564 DOI: 10.1094/PDIS-01-12-0081-PDN
    In the last decade, rambutan (Nephelium lappaceum L., Sapindaceae) and pulasan (N. mutabile Blume) have been cultivated in Honduras to produce exotic fruits for export to North America (2). Recently, a disease was observed that produces dark brown to black fissured cankers from 1 to 3 cm long and 1 to 4 cm wide. The infected bark tissue becomes swollen with the middle region 3 to 8 mm thick. Symptoms appear when the trees are approximately 3 years old. As the trees mature, the cankers increase in size and weaken the branches, often resulting in breakage with the weight of the fruit causing substantial plant damage and fruit loss. In August 2010, fissured branch samples of rambutan and pulasan were collected from 6- to 8-year-old trees from the Humid Tropical Demonstrative Agroforestry Center in Honduras, Atlantida, La Masica (15°33'47.4″N, 87°05'2.5″W, elevation 106 m). A fungus associated with the cankers was identified as Dolabra nepheliae. It produces black, stipitate, elongate ascomata, 312 to 482 × 250 to 281 μm with broadly cylindric, bitunicate asci, 120 to 138 × 11.2 to 15.0 μm, and filiform, hyaline ascospores, 128 to 135 × 2.8 to 3.2 μm. Fungi from rambutan and pulasan were isolated on cornmeal agar plus 0.5% dextrose and antibiotics. On potato dextrose agar, the ascospores produced slow-growing colonies, 5 mm per week. In culture, isolates from both hosts produced pycnidia with elongated, slightly to strongly curved or S-shaped, hyaline conidia, 22.8 to 46.4 × 2.8 to 3.7 μm. This fungus was first reported on rambutan and pulasan from Malaysia (1,4), and later reported on rambutan and litchi in Hawaii and Puerto Rico (3). To our knowledge, this is the first report of D. nepheliae on pulasan and rambutan from Honduras. Specimens have been deposited at the U.S. National Fungus Collections (BPI 882442 on N. lappaceum and BPI 882443 on N. mutabile). Cultures were deposited at the Centraalbureau voor Schimmelcultures (CBS) as CBS 131490 on N. lappaceum and CBS 131491 on N. mutabile. Sequences of the internal transcribed spacer (ITS) region including ITS1, 5.8S, and ITS2 intergenic spacers were deposited in GenBank (Accession No. JQ004281 on N. lappaceum and Accession No. JQ004280 on N. mutabile). A BLAST search and pairwise comparison using the GenBank web server were used to compare ITS sequence data and recovered the following results: (i) CBS 131490 on N. lappaceum is 99% (538 of 544) identical to D. nepheliae CBS 123297 on Litchi chinensis from Puerto Rico; and (ii) CBS 131491 on N. mutabile is 99% (527 of 533) identical to the same strain of D. nepheliae. On the basis of the ITS sequence data, the isolates from Honduras were confirmed as the same species, D. nepheliae from Puerto Rico. Efforts to develop resistant germplasm and management strategies to control this disease have been initiated. References: (1) C. Booth and W. P. Ting. Trans. Brit. Mycol. Soc. 47:235, 1964. (2) T. Ramírez et al. Manual Para el Cultivo de Rambutan en Honduras. Fundación Hondureña de Investigación Agrícola. La Lima, Cortes, Honduras, 2003. (3) A. Y. Rossman et al. Plant Dis. 91:1685, 2007. (4) H. Zalasky et al. Can. J. Bot. 49:559, 1971.
    Matched MeSH terms: Puerto Rico
  12. Chatenet M, Delage C, Ripolles M, Irey M, Lockhart BEL, Rott P
    Plant Dis, 2001 Nov;85(11):1177-1180.
    PMID: 30823163 DOI: 10.1094/PDIS.2001.85.11.1177
    Sugarcane yellow leaf virus (SCYLV) was detected for the first time in 1996 in the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) sugarcane quarantine at Montpellier by reverse transcription-polymerase chain reaction (RT-PCR) in varieties from Brazil, Florida, Mauritius, and Réunion. Between 1997 and 2000, the virus was found by RT-PCR and/or tissue-blot immunoassay (TBIA) in additional varieties from Barbados, Cuba, Guadeloupe, Indonesia, Malaysia, Philippines, Puerto Rico, and Taiwan, suggesting a worldwide distribution of the pathogen. An excellent correlation was observed between results obtained for the two diagnostic techniques. However, even though only a few false negative results were obtained by either technique, both are now used to detect SCYLV in CIRAD's sugarcane quarantine in Montpellier. The pathogen was detected by TBIA or RT-PCR in all leaves of sugarcane foliage, but the highest percentage of infected vascular bundles was found in the top leaves. The long hot water treatment (soaking of cuttings in water at 25°C for 2 days and then at 50°C for 3 h) was ineffective in eliminating SCYLV from infected plants. Sugarcane varieties from various origins were grown in vitro by apical bud culture and apical meristem culture, and the latter proved to be the most effective method for producing SCYLV-free plants.
    Matched MeSH terms: Puerto Rico
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links