Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Chan SC, Patrick Engkasan J
    Int J Rheum Dis, 2020 Dec;23(12):1741-1743.
    PMID: 33118670 DOI: 10.1111/1756-185X.13948
    Matched MeSH terms: Range of Motion, Articular/physiology*
  2. Bashaireh KM, Yabroudi MA, Nawasreh ZH, Al-Zyoud SM, Bashir NB, Aleshawi AJ, et al.
    Knee, 2020 Aug;27(4):1205-1211.
    PMID: 32711883 DOI: 10.1016/j.knee.2020.05.003
    BACKGROUND: A high incidence of joint laxity has been reported among Asians compared with Western populations, but clear differences between more specific ethnic populations have not been established. This study aimed to determine the average knee laxity in the Malaysian and Jordanian populations.

    METHODS: Jordanian and Malaysian medical students from our institution were invited to participate in the study. General demographic data and factors affecting joint laxity were obtained from each participant using a printed questionnaire. Both knees were examined using the anterior drawer test while in 90° of flexion. Knee laxity was measured by three separate independent investigators through a knee laxity tester.

    RESULTS: One hundred and eighty-six participants (95 females) were enrolled in the study. Among them, 108 Malaysians participated. The Jordanians had significantly higher knee laxity in both knees compared with the Malaysians. The mean average right knee laxity for Jordanians was 2.98 mm vs. 2.72 mm for Malaysians (P = 0.005). Similarly, the mean average left knee laxity for Jordanians was 2.95 mm, while for Malaysians, it was 2.62 mm (P = 0.0001). Furthermore, smokers had significantly more laxity in both knees. After performing a multivariate linear regression analysis for all factors, race was the only independent factor that affected knee laxity in both knees.

    CONCLUSIONS: Race is directly associated with knee laxity. Jordanians tend to have more laxity in knee joints compared with Malaysians. Larger multi-center and genetic studies are recommended to establish the racial differences between different ethnic groups.

    Matched MeSH terms: Range of Motion, Articular/physiology*
  3. Loh PY, Hayashi K, Nasir N, Muraki S
    J Mot Behav, 2020;52(5):634-642.
    PMID: 31571525 DOI: 10.1080/00222895.2019.1670128
    This study investigated the muscle activity and force variability in response to perturbation of assistive force during isometric elbow flexion. Sixteen healthy right-handed young men (age: 22.0 ± 1.1 years; height: 171.9 ± 4.8 cm; weight 68.4 ± 11.2 kg) were recruited and the muscle activity of biceps brachii and triceps brachii were assessed using surface electromyography. Workload force and assistive force applied on isometric elbow flexion significantly affected the changes in both biceps and triceps muscle activities. A higher assistive force was shown to result in reduced biceps muscle activity compared to the unassisted period. In contrast, the efficiency of the assistive force acting on the biceps decreased as the assistive force increased. In general, the force variability of the biceps muscle remained approximately the same at lower workload force conditions than that at higher workload force conditions. In conclusion, higher assistive force may not yield a higher performance efficiency in human-assistive force interaction.
    Matched MeSH terms: Range of Motion, Articular/physiology
  4. Ajit Singh V, Earnest Kunasingh D, Haseeb A, Yasin NF
    J Orthop Surg (Hong Kong), 2019 5 30;27(2):2309499019850313.
    PMID: 31138060 DOI: 10.1177/2309499019850313
    PURPOSE: Expandable endoprosthesis allows limb salvage in children with an option to leading a better life. However, the revision rate and implant-related complications impose as a limitation in the skeletal immature. This study investigates the functional outcomes and complications related to expandable endoprosthesis in our centre.

    MATERIALS AND METHODS: Twenty surviving patients with expandable endoprosthesis from 2006 till 2015 were scored using Musculoskeletal Tumour Society (MSTS) outcomes instrument and reviewed retrospectively for range of motion of respected joints, limb length discrepancy, number of surgeries performed, complications and oncological outcomes. Patients with less than 2 years of follow-up were excluded from this study.

    RESULTS: Forty-five percentage patients reached skeletal maturity with initial growing endoprosthesis and 25% of patients were revised to adult modular prosthesis. One hundred fifty-seven surgeries were performed over the 9-year period. The average MSTS score was 90.83%. The mortality rate was 10% within 5 years due to advanced disease. Infection and implant failure rate was 15% each. The event-free survival was 50% and overall survival rate was 90%.

    CONCLUSION: There is no single best option for reconstruction in skeletally immature. This study demonstrates a favourable functional and survival outcome of paediatric patients with expandable endoprosthesis. The excellent MSTS functional scores reflect that patients were satisfied and adjusted well to activities of daily living following surgery despite the complications.

    Matched MeSH terms: Range of Motion, Articular/physiology*
  5. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Prosthet Orthot Int, 2019 Apr;43(2):148-157.
    PMID: 30192706 DOI: 10.1177/0309364618796849
    BACKGROUND:: Knee osteoarthritis is a major contributor to the global burden of disease. There is a need of reducing knee joint load and to improve balance and physical function among knee osteoarthritis patients.

    OBJECTIVES:: To test the hypothesis that toe-out gait will reduce second peak knee adduction moment further and increase fall risk when combined with knee brace and laterally wedged insole in knee osteoarthritis patients.

    STUDY DESIGN:: Single visit study with repeated measures.

    METHODS:: First and second peak knee adduction moments, fall risk and comfort level. First and second peak knee adduction moments were determined from three-dimensional gait analysis, completed under six randomized conditions: (1) natural, (2) knee brace, (3) knee brace + toe-out gait, (4) laterally wedged insole, (5) laterally wedged insole + toe-out gait, and (6) knee brace + laterally wedged insole + toe-out gait. Fall risk was assessed by Biodex Balance System using three randomized stability settings: (1) static, (2) moderate dynamic setting (FR12), and (3) high dynamic setting (FR8).

    RESULTS:: The reduction in first peak knee adduction moment and second peak knee adduction moment was greatest (7.16% and 25.55%, respectively) when toe-out gait combine with knee brace and laterally wedged insole. Significant increase in fall risk was observed with knee brace + laterally wedged insole + toe-out gait (42.85%) at FR12. Similar significant balance reductions were found at FR8 condition for knee brace + toe-out gait (35.71%), laterally wedged insole + toe-out gait (28.57%), and knee brace + laterally wedged insole + toe-out gait (50%) as compared to natural. However, knee brace decreased fall risk at FR12 by 28.57%.

    CONCLUSION:: There is a synergistic effect of toe-out when combined with knee brace and laterally wedged insole concurrently in second peak knee adduction moment reduction but with a greater degree of fall risk. Simultaneous use of conservative treatments also decreases comfort level.

    CLINICAL RELEVANCE: Patients with mild and moderate knee osteoarthritis are usually prescribed conservative treatment techniques. This study will provide an insight whether or not a combination of these techniques have a synergistic effect in reducing knee joint load.

    Matched MeSH terms: Range of Motion, Articular/physiology*
  6. Chiu CK, Lisitha KA, Elias DM, Yong VW, Chan CYW, Kwan MK
    J Orthop Surg (Hong Kong), 2018 10 26;26(3):2309499018806700.
    PMID: 30352524 DOI: 10.1177/2309499018806700
    BACKGROUND: This prospective clinical-radiological study was conducted to determine whether the dynamic mobility stress radiographs can predict the postoperative vertebral height restoration, kyphosis correction, and cement volume injected after vertebroplasty.

    METHODS: Patients included had the diagnosis of significant back pain caused by osteoporotic vertebral compression fracture secondary to trivial injury. All the patients underwent routine preoperative sitting lateral spine radiograph, supine stress lateral spine radiograph, and supine anteroposterior spine radiograph. The radiological parameters recorded were anterior vertebral height (AVH), middle vertebral height (MVH), posterior vertebral height (PVH), MVH level below, wedge endplate angle (WEPA), and regional kyphotic angle (RKA). The supine stress versus sitting difference (SSD) for all the above parameters were calculated.

    RESULTS: A total of 28 patients (4 males; 24 females) with the mean age of 75.6 ± 7.7 years were recruited into this study. The mean cement volume injected was 5.5 ± 1.8 ml. There was no difference between supine stress and postoperative radiographs for AVH ( p = 0.507), PVH ( p = 0.913) and WEPA ( p = 0.379). The MVH ( p = 0.026) and RKA ( p = 0.005) were significantly less in the supine stress radiographs compared to postoperative radiographs. There was significant correlation ( p < 0.05) between supine stress and postoperative AVH, MVH, PVH, WEPA, and RKA. The SSD for AVH, PVH, WEPA, and RKA did not have significant correlation with the cement volume ( p > 0.05). Only the SSD-MVH had significant correlation with cement volume, but the correlation was weak ( r = 0.39, p = 0.04).

    CONCLUSIONS: Dynamic mobility stress radiographs can predict the postoperative vertebral height restoration and kyphosis correction after vertebroplasty for thoracolumbar osteoporotic fracture with intravertebral clefts. However, it did not reliably predict the amount of cement volume injected as it was affected by other factors.

    Matched MeSH terms: Range of Motion, Articular/physiology
  7. Masni-Azian, Tanaka M
    Comput Biol Med, 2018 07 01;98:26-38.
    PMID: 29758454 DOI: 10.1016/j.compbiomed.2018.05.010
    Intervertebral disc degeneration involves changes in its material properties that affect the mechanical functions of the spinal system. However, the alteration of the biomechanics of a spinal segment through specific material degradation in a specific region is poorly understood. In this study, the influence of the constitutive material degeneration of disc tissues on the mechanics of a lower lumbar spinal unit was examined using a three-dimensional nonlinear finite element model of the L4-L5 functional spinal unit. Different grades of disc degeneration were simulated by introducing a degeneration factor to the corresponding material properties to represent fibrous nucleus, increased fibre and ground substance laxity, increased fibre stiffness and total annular fracture along posterior and posterolateral regions. The model was loaded with an axial compression of 500 N and pure moments of up to 10 Nm to simulate extension, flexion, lateral bending and axial rotation. To validate the model, the spinal motion and intradiscal pressure of healthy and degenerated discs with existing in vitro data were compared. The disc with a fibrous nucleus and the presence of intradiscal pressure increase the spinal instability during flexion and axial rotation, and the absence of intradiscal pressure increases the spinal instability in all directions. Bulging displacement and shear strains in the disc with total fracture and ground substance laxity are high in all of the loading cases. Our study could provide useful information to enhance our understanding of the influence of each constitutive component of the intervertebral disc on the mechanics of the spinal segment.
    Matched MeSH terms: Range of Motion, Articular/physiology
  8. Masni-Azian, Tanaka M
    Comput Methods Biomech Biomed Engin, 2017 Aug;20(10):1066-1076.
    PMID: 28532164 DOI: 10.1080/10255842.2017.1331345
    In the biomechanics field, material parameters calibration is significant for finite element (FE) model to ensure a legit estimation of biomechanical response. Determining an appropriate combination of calibration factors is challenging as each constitutive component responds differently. This study proposes a statistical factorial analysis approach using L16(4(5)) orthogonal array to evaluate material nonlinearity and applicable calibration factor of the intervertebral disc FE model in pure moment. The calibrated model exhibits improved agreement to the experimental findings for all directions. Appropriate combination of calibration parameter reduces the estimation gap to the experimental findings, ensuring agreeable biomechanical responses.
    Matched MeSH terms: Range of Motion, Articular/physiology
  9. Hasan H, Davids K, Chow JY, Kerr G
    Eur J Sport Sci, 2017 Apr;17(3):294-302.
    PMID: 27739339 DOI: 10.1080/17461391.2016.1241829
    This study investigated effects of wearing compression garments and textured insoles on modes of movement organisation emerging during performance of lower limb interceptive actions in association football. Participants were six skilled (age = 15.67 ± 0.74 years) and six less-skilled (age = 15.17 ± 1.1 years) football players. All participants performed 20 instep kicks with maximum velocity in four randomly organised insoles and socks conditions, (a) Smooth Socks with Smooth Insoles (SSSI); (b) Smooth Socks with Textured Insoles (SSTI); (c) Compression Socks with Smooth Insoles (CSSI); and (d), Compression Socks with Textured Insoles (CSTI). Results showed that, when wearing textured and compression materials (CSSI condition), less-skilled participants displayed significantly greater hip extension and flexion towards the ball contact phase, indicating larger ranges of motion in the kicking limb than in other conditions. Less-skilled participants also demonstrated greater variability in knee-ankle intralimb (angle-angle plots) coordination modes in the CSTI condition. Findings suggested that use of textured and compression materials increased attunement to somatosensory information from lower limb movement, to regulate performance of dynamic interceptive actions like kicking, especially in less-skilled individuals.
    Matched MeSH terms: Range of Motion, Articular/physiology
  10. Wahab AH, Kadir MR, Harun MN, Kamarul T, Syahrom A
    Med Biol Eng Comput, 2017 Mar;55(3):439-447.
    PMID: 27255451 DOI: 10.1007/s11517-016-1525-6
    The present study was conducted to compare the stability of four commercially available implants by investigating the focal stress distributions and relative micromotion using finite element analysis. Variations in the numbers of pegs between the implant designs were tested. A load of 750 N was applied at three different glenoid positions (SA: superior-anterior; SP: superior-posterior; C: central) to mimic off-center and central loadings during activities of daily living. Focal stress distributions and relative micromotion were measured using Marc Mentat software. The results demonstrated that by increasing the number of pegs from two to five, the total focal stress volumes exceeding 5 MPa, reflecting the stress critical volume (SCV) as the threshold for occurrence of cement microfractures, decreased from 8.41 to 5.21 % in the SA position and from 9.59 to 6.69 % in the SP position. However, in the C position, this change in peg number increased the SCV from 1.37 to 5.86 %. Meanwhile, micromotion appeared to remain within 19-25 µm irrespective of the number of pegs used. In conclusion, four-peg glenoid implants provide the best configuration because they had lower SCV values compared with lesser-peg implants, preserved more bone stock, and reduced PMMA cement usage compared with five-peg implants.
    Matched MeSH terms: Range of Motion, Articular/physiology*
  11. Chan CYW, Chiu CK, Kwan MK
    Spine (Phila Pa 1976), 2016 Aug 15;41(16):E973-E980.
    PMID: 26909833 DOI: 10.1097/BRS.0000000000001516
    STUDY DESIGN: A prospective study.

    OBJECTIVE: The aim of this study was to analyze the proximal thoracic (PT) flexibility and its compensatory ability above the "potential UIV."

    SUMMARY OF BACKGROUND DATA: Shoulder and neck imbalance can be caused by overcorrection of the main thoracic (MT) curve due to inability of PT segment to compensate.

    METHODS: Cervical supine side bending (CSB) radiographs of 100 Lenke 1 and 2 patients were studied. We further stratified Lenke 1 curves into Lenke 1-ve: PT side bending (PTSB) 80.0% of cases of the PT segment were unable to compensate at T3-T6. In Lenke 1+ve curves, 78.4% were unable to compensate at T6, followed by T5 (75.7%), T4 (73.0%), T3 (59.5%), T2 (27.0%), and T1 (21.6%). In Lenke 1-ve curves, 36.4% of cases were unable to compensate at T6, followed by T5 (45.5%), T4 (45.5%), T3 (30.3%), T2 (21.2%), and T1 (15.2%). A significant difference between Lenke 1-ve and Lenke 1+ve was observed from T3 to T6. The difference between Lenke 1+ve and Lenke 2 curves was significant only at T2.

    CONCLUSION: The compensation ability and the flexibility of the PT segments of Lenke 1-ve and Lenke 1+ve curves were different. Lenke 1+ve curves demonstrated similar characteristics to Lenke 2 curves.

    LEVEL OF EVIDENCE: 3.

    Matched MeSH terms: Range of Motion, Articular/physiology*
  12. Mat Eil Ismail MS, Sharifudin MA, Shokri AA, Ab Rahman S
    Singapore Med J, 2016 Mar;57(3):138-43.
    PMID: 26996450 DOI: 10.11622/smedj.2016055
    INTRODUCTION: Physiotherapy is an important part of rehabilitation following arthroplasty, but the impact of preoperative physiotherapy on functional outcomes is still being studied. This randomised controlled trial evaluated the effect of preoperative physiotherapy on the short-term functional outcomes of primary total knee arthroplasty (TKA).
    METHODS: 50 patients with primary knee osteoarthritis who underwent unilateral primary TKA were randomised into two groups: the physiotherapy group (n = 24), whose patients performed physical exercises for six weeks immediately prior to surgery, and the nonphysiotherapy group (n = 26). All patients went through a similar physiotherapy regime in the postoperative rehabilitation period. Functional outcome assessment using the algofunctional Knee Injury and Osteoarthritis Outcome Score (KOOS) scale and range of motion (ROM) evaluation was performed preoperatively, and postoperatively at six weeks and three months.
    RESULTS: Both groups showed a significant difference in all algofunctional KOOS subscales (p < 0.001). The mean score difference at six weeks and three months was not significant in the sports and recreational activities subscale for both groups (p > 0.05). Significant differences were observed in the time-versus-treatment analysis between groups for the symptoms (p = 0.003) and activities of daily living (p = 0.025) subscales. No significant difference in ROM was found when comparing preoperative measurements and those at three months following surgery, as well as in time-versus-treatment analysis (p = 0.928).
    CONCLUSION: Six-week preoperative physiotherapy showed no significant impact on short-term functional outcomes (KOOS subscales) and ROM of the knee following primary TKA.
    KEYWORDS: algofunctional Knee Injury and Osteoarthritis Outcome Score; functional outcome; prehabilitation; preoperative physiotherapy; total knee arthroplasty
    Matched MeSH terms: Range of Motion, Articular/physiology*
  13. Islam A, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    Muscle Nerve, 2015 Jun;51(6):899-906.
    PMID: 25204740 DOI: 10.1002/mus.24454
    In this study, we analyzed the crosstalk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles of the forearm during wrist flexion (WF) and extension (WE) and radial (RD) and ulnar (UD) deviations.
    Matched MeSH terms: Range of Motion, Articular/physiology*
  14. Sheykhi-Dolagh R, Saeedi H, Farahmand B, Kamyab M, Kamali M, Gholizadeh H, et al.
    Prosthet Orthot Int, 2015 Jun;39(3):190-6.
    PMID: 24604086 DOI: 10.1177/0309364614521652
    BACKGROUND: Flexible flat foot is described as a reduction in the height of the medial longitudinal arch and may occur from abnormal foot pronation. A foot orthosis is thought to modify and control excessive pronation and improve arch height.
    OBJECTIVE: To compare the immediate effect of three types of orthoses on foot mobility and the arch height index in subjects with flexible flat feet.
    STUDY DESIGN: A quasi-experimental study.
    METHOD: The dorsal arch height, midfoot width, foot mobility and arch height index were assessed in 20 participants with flexible flat feet (mean age = 23.2 ± 3 years) for three different foot orthosis conditions: soft, semi-rigid and rigid University of California Biomechanics Laboratory (UCBL).
    RESULTS: Maximum midfoot width at 90% with arch mobility in the coronal plane was shown in the semi-rigid orthosis condition. The semi-rigid orthosis resulted in the highest mean foot mobility in 90% of weight bearing, and the rigid orthosis (UCBL) had the lowest mean foot mobility. The soft orthosis resulted in foot mobility between that of the rigid and the semi-rigid orthosis. UCBL orthosis showed the highest arch height index, and the semi-rigid orthosis showed the lowest mean arch height index.
    CONCLUSION: Due to its rigid structure and long medial-lateral walls, the UCBL orthosis appears to limit foot mobility. Therefore, it is necessary to make an orthosis that facilitates foot mobility in the normal range of the foot arch. Future studies should address the dynamic mobility of the foot with using various types of foot orthoses.
    CLINICAL RELEVANCE: Although there are many studies focussed on flat foot and the use of foot orthoses, the mechanism of action is still unclear. This study explored foot mobility and the influence of foot orthoses and showed that a more rigid foot orthosis should be selected based on foot mobility.
    KEYWORDS: Foot orthosis; arch height index; foot mobility magnitude
    Matched MeSH terms: Range of Motion, Articular/physiology*
  15. Abd Razak NA, Abu Osman NA, Kamyab M, Wan Abas WA, Gholizadeh H
    Am J Phys Med Rehabil, 2014 May;93(5):437-44.
    PMID: 24429510 DOI: 10.1097/PHM.0b013e3182a51fc2
    This report compares wrist supination and pronation and flexion and extension movements with the common body-powered prosthesis and a new biomechatronics prosthesis with regard to patient satisfaction and problems experienced with the prosthesis. Fifteen subjects with traumatic transradial amputation who used both prosthetic systems participated in this study. Each subject completed two questionnaires to evaluate their satisfaction and problems experienced with the two prosthetic systems. Satisfaction and problems with the prosthetic's wrist movements were analyzed in terms of the following: supination and pronation; flexion and extension; appearance; sweating; wounds; pain; irritation; pistoning; smell; sound; durability; and the abilities to open a door, hold a cup, and pick up or place objects. This study revealed that the respondents were more satisfied with the biomechatronics wrist prosthesis with regard to supination and pronation, flexion and extension, pain, and the ability to open a door. However, satisfaction with the prosthesis showed no significant differences in terms of sweating, wounds, irritation, pistoning, smell, sound, and durability. The abilities to hold a cup and pick up or place an object were significantly better with the body-powered prosthesis. The results of the survey suggest that satisfaction and problems with wrist movements in persons with transradial amputation can be improved with a biomechatronics wrist prosthesis compared with the common body-powered prosthesis.
    Matched MeSH terms: Range of Motion, Articular/physiology*
  16. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(8):e104280.
    PMID: 25090008 DOI: 10.1371/journal.pone.0104280
    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
    Matched MeSH terms: Range of Motion, Articular/physiology
  17. Ling XF, Peng X, Samman N
    J Oral Maxillofac Surg, 2013 Sep;71(9):1604-12.
    PMID: 23810616 DOI: 10.1016/j.joms.2013.03.006
    This study evaluated and compared the long-term donor-site morbidity of the free fibula flap with the deep circumflex iliac artery (DCIA) flap in maxillofacial reconstruction.
    Matched MeSH terms: Range of Motion, Articular/physiology
  18. Makinejad MD, Abu Osman NA, Abu Bakar Wan Abas W, Bayat M
    Clinics (Sao Paulo), 2013 Sep;68(9):1180-8.
    PMID: 24141832 DOI: 10.6061/clinics/2013(09)02
    This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height.
    Matched MeSH terms: Range of Motion, Articular/physiology
  19. Abd Razak NA, Abu Osman NA, Wan Abas WA
    Disabil Rehabil Assist Technol, 2013 May;8(3):255-60.
    PMID: 22830946 DOI: 10.3109/17483107.2012.704654
    This study examined the kinematic differences between a body-powered prosthesis and a biomechatronics prosthesis as a transradial amputee performed activities that involve flexion/extension and supination/pronation of the wrist.
    Matched MeSH terms: Range of Motion, Articular/physiology*
  20. Amiri-Khorasani M, Abu Osman NA, Yusof A
    J Strength Cond Res, 2011 Jun;25(6):1647-52.
    PMID: 21358428 DOI: 10.1519/JSC.0b013e3181db9f41
    The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.
    Matched MeSH terms: Range of Motion, Articular/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links