Displaying publications 1 - 20 of 2661 in total

Abstract:
Sort:
  1. Lokman EF, Gu HF, Wan Mohamud WN, Östenson CG
    PMID: 26199630 DOI: 10.1155/2015/120572
    Aims. To evaluate the antidiabetic effects of Gynostemma pentaphyllum (GP) in Goto-Kakizaki (GK) rat, an animal model of type 2 diabetes, and to investigate the mechanisms of insulin release. Methods. Oral glucose tolerance test was performed and plasma insulin levels were measured. Results. An oral treatment with GP (0.3 g/kg of body weight daily) for two weeks in GK rats improved glucose tolerance versus placebo group (P < 0.01). Plasma insulin levels were significantly increased in the GP-treated group. The insulin release from GP-treated GK rats was 1.9-fold higher as compared to the control group (P < 0.001). GP stimulated insulin release in isolated GK rat islets at high glucose. Opening of ATP-sensitive potassium (K-ATP) channels by diazoxide and inhibition of calcium channels by nifedipine significantly decreased insulin response to GP. Furthermore, the protein kinase A (PKA) inhibitor H89 decreased the insulin response to GP (P < 0.05). In addition, GP-induced insulin secretion was decreased after preincubation of GK islets with pertussis toxin to inhibit exocytotic Ge proteins (P < 0.05). Conclusion. The antidiabetic effect of GP is associated with the stimulation of insulin release from the islets. GP-induced insulin release is partly mediated via K-ATP and L-type Ca(2+) channels, the PKA system and also dependent on pertussis toxin sensitive Ge-protein.
    Matched MeSH terms: Rats
  2. Coene KL, Roepman R, Doherty D, Afroze B, Kroes HY, Letteboer SJ, et al.
    Am J Hum Genet, 2009 Oct;85(4):465-81.
    PMID: 19800048 DOI: 10.1016/j.ajhg.2009.09.002
    We ascertained a multi-generation Malaysian family with Joubert syndrome (JS). The presence of asymptomatic obligate carrier females suggested an X-linked recessive inheritance pattern. Affected males presented with mental retardation accompanied by postaxial polydactyly and retinitis pigmentosa. Brain MRIs showed the presence of a "molar tooth sign," which classifies this syndrome as classic JS with retinal involvement. Linkage analysis showed linkage to Xpter-Xp22.2 and a maximum LOD score of 2.06 for marker DXS8022. Mutation analysis revealed a frameshift mutation, p.K948NfsX8, in exon 21 of OFD1. In an isolated male with JS, a second frameshift mutation, p.E923KfsX3, in the same exon was identified. OFD1 has previously been associated with oral-facial-digital type 1 (OFD1) syndrome, a male-lethal X-linked dominant condition, and with X-linked recessive Simpson-Golabi-Behmel syndrome type 2 (SGBS2). In a yeast two-hybrid screen of a retinal cDNA library, we identified OFD1 as an interacting partner of the LCA5-encoded ciliary protein lebercilin. We show that X-linked recessive mutations in OFD1 reduce, but do not eliminate, the interaction with lebercilin, whereas X-linked dominant OFD1 mutations completely abolish binding to lebercilin. In addition, recessive mutations in OFD1 did not affect the pericentriolar localization of the recombinant protein in hTERT-RPE1 cells, whereas this localization was lost for dominant mutations. These findings offer a molecular explanation for the phenotypic spectrum observed for OFD1 mutations; this spectrum now includes OFD1 syndrome, SGBS2, and JS.
    Matched MeSH terms: Rats, Wistar; Rats
  3. Eu CH, Lim WY, Ton SH, bin Abdul Kadir K
    Lipids Health Dis, 2010;9:81.
    PMID: 20670429 DOI: 10.1186/1476-511X-9-81
    The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  4. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W
    J Neurol Sci, 2006 Apr 15;243(1-2):5-12.
    PMID: 16442562
    Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
    Matched MeSH terms: Rats, Wistar; Rats
  5. Yoke Keong Y, Arifah AK, Sukardi S, Roslida AH, Somchit MN, Zuraini A
    Med Princ Pract, 2011;20(2):142-6.
    PMID: 21252569 DOI: 10.1159/000319907
    The present study was conducted to assess the anti-inflammatory effect of a crude aqueous extract of Bixa orellana leaves (AEBO) and to examine the possible involvement of nitric oxide (NO) in its anti-inflammatory mechanism.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  6. Shahida S, Nor Zamzila A, Norlelawati AT, Jamalludin AR, Azliana AF, Zunariah Buyong
    MyJurnal
    Introduction: Over the decades, organic arsenic has been thought to be less toxic than inorganic arsenic.
    Monosodium methylarsonate (MSMA) is a potent organoarsenical herbicide that is still being used in most
    Asian countries. Reported studies on the effects of organic arsenic are mainly to the gastrointestinal system,
    however there are limited research on its impacts to the liver. Therefore, this study aimed to investigate the
    effect of MSMA exposure on hepatocytes and liver sinusoidal endothelial cells (LSEC). Materials and Methods:
    Fourteen Sprague Dawley rats (n=14) were divided equally into arsenic-exposed (n=7) and control (n=7)
    groups. The rats in arsenic-exposed group were given MSMA at 63.20 mg/kg daily for 6 months through oral
    gavage. While the rats in control group were given distilled water ad libitum. At the end of the duration,
    they were euthanized and underwent liver perfusion for tissue preservation. Liver tissues were harvested and
    processed for light microscopy, scanning and transmission electron microscopy. The findings were analysed
    descriptively. Results: MSMA had caused necrotic and apoptotic changes to the liver. Normal organelles
    morphology were loss in the hepatocytes while LSEC revealed defenestration. Conclusion: In this study,
    chronic low dose organic arsenic exposure showed evidence of toxicity to hepatocytes. Interestingly, LSEC
    demonstrated capillarization changes.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  7. Abulehia H, Mohd Nor NS, Sheikh Abdul Kadir SH, Abdul Aziz M, Zulkifli S
    Sci Rep, 2023 Jun 08;13(1):9322.
    PMID: 37291156 DOI: 10.1038/s41598-023-36043-1
    Bisphenol A (BPA) is a plasticiser used in the manufacturing of many products and its effects on human health remain controversial. Up till now, BPA involvement in metabolic syndrome risk and development is still not fully understood. In this study, we aimed to investigate the effect of prenatal BPA exposure with postnatal trans-fat diet intake on metabolic parameters and pancreatic tissue histology. Eighteen pregnant rats were divided into control (CTL), vehicle tween 80 (VHC), and BPA (5 mg/kg/day) from gestational day (GD) 2 until GD 21, then their weaning rat's offspring were fed with normal diet (ND) or trans-fat diet (TFD) from postnatal week (PNW) 3 until PNW 14. The rats were then sacrificed and the blood (biochemical analysis) and pancreatic tissues (histological analysis) were collected. Glucose, insulin, and lipid profile were measured. The study has shown that there was no significant difference between groups with regard to glucose, insulin, and lipid profiles (p > 0.05). All pancreatic tissues showed normal architecture with irregular islets of Langerhans in TFD intake groups compared to offspring that consumed ND. Furthermore, the pancreatic histomorphometry was also affected whereby the study findings revealed that there was a significant increase in the mean number of pancreatic islets in rats from BPA-TFD group (5.987 ± 0.3159 islets/field, p = 0.0022) compared to those fed with ND and BPA non-exposed. In addition, the results have found that prenatal BPA exposure resulted in a significant decrease in the pancreatic islets diameter of the BPA-ND group (183.3 ± 23.28 µm, p = 0.0022) compared to all other groups. In conclusion, prenatal BPA exposure with postnatal TFD in the offspring may affect glucose homeostasis and pancreatic islets in adulthood, and the effect may be more aggravated in late adulthood.
    Matched MeSH terms: Rats
  8. Ishak WMW, Katas H, Yuen NP, Abdullah MA, Zulfakar MH
    Drug Deliv Transl Res, 2019 04;9(2):418-433.
    PMID: 29667150 DOI: 10.1007/s13346-018-0522-8
    Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p 
    Matched MeSH terms: Rats, Wistar
  9. Tou KAS, Rehman K, Ishak WMW, Zulfakar MH
    Drug Dev Ind Pharm, 2019 Sep;45(9):1451-1458.
    PMID: 31216907 DOI: 10.1080/03639045.2019.1628042
    Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93-409.86 nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97 ± 0.91 mg/cm2) and drug flux (0.19 ± 0.05 mg/cm2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.
    Matched MeSH terms: Rats
  10. Sultan MT, Butt MS, Karim R, Ahmed W, Kaka U, Ahmad S, et al.
    PMID: 26385559 DOI: 10.1186/s12906-015-0853-7
    Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  11. Akowuah GA, Zhari I
    Pharmazie, 2008 Nov;63(11):788-90.
    PMID: 19069237
    A simple high-performance liquid chromatography (HPLC) method to determine the content of betulinic acid (BA) in rat plasma collected at different times (0-8 h) after oral administration of Orthosiphon stamineus leaf extract was developed. The features of the assay include protein precipitation using acetonitrile and isocratic elution using reverse phase C-18 column with ultraviolet (UV) detection. The recovery of BA from plasma varied from 98.4 to 102.5%. The R.S.D of intra- and inter-day precision from rat plasma ranged from 4.2 to 9.8%. The maximum concentration of BA in the plasma was 1.2 +/- 0.3 microg/ml at 1 h after oral administration of the extract.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  12. Wong WT, Ismail M, Imam MU, Zhang YD
    BMC Complement Altern Med, 2016 Jul 28;16:252.
    PMID: 27465266 DOI: 10.1186/s12906-016-1223-9
    Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  13. Wong WT, Ismail M, Tohit ER, Abdullah R, Zhang YD
    PMID: 27800004
    Background. Vascular occlusion or thrombosis was often attributed to uncontrolled platelet activation. Influence of sugarcane policosanol extract on platelet was reported but little was known of rice bran policosanol, particularly its mechanisms of actions on platelet activities. Objective. Antiplatelet mechanisms of rice bran policosanol extract (RBE) were studied using hyperlipidemic Sprague Dawley rats. Ex vivo platelet aggregation, platelet count (PC), bleeding time (BT), and coagulation time were assayed. Serum eicosanoids and other aggregation-related metabolites levels were quantified. Design. Rats were divided into 6 groups for comparisons (vehicle control Tween 20/H2O, high dose policosanol 500 mg/kg, middle dose policosanol 250 mg/kg, low dose policosanol 100 mg/kg, and positive control aspirin 30 mg/kg). Results. Low dose 100 mg/kg of RBE inhibited aggregation by 42.32 ± 4.31% and this was comparable with the effect of 30 mg/kg aspirin, 43.91 ± 5.27%. Results showed that there were no significant differences in PC, BT, and coagulation time among various groups after RBE treatment. Serum thromboxane A2 was attenuated while prostacyclin level increased upon RBE treatment. Conclusions. RBE reduced ex vivo ADP-induced platelet aggregation without giving adverse effects. No changes in full blood count suggested that rice bran policosanol did not disturb biological blood cell production and destruction yet it reduced aggregation through different mechanisms.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  14. Yang B, Wang Q, Li Y, Li L, Zhang Y, Leong Bin Abdullah MFI, et al.
    PLoS One, 2023;18(4):e0282488.
    PMID: 37099528 DOI: 10.1371/journal.pone.0282488
    OBJECTIVE: The present study opted for the adrenal phaeochromocytoma (PC12) cell line to frame a neuronal injury model induced by alcohol exposure in vitro, aiming to probe whether TAp73 and miR-96-5p are involved in the neuronal injury process induced by alcohol and elucidate the regulatory relationship between miR-96-5p and TAp73.

    METHODS: Immunofluorescence staining was used to observe the structural features of PC12 cells after culturing in medium with nerve growth factor (NGF). After different doses and different durations of alcohol treatment, CCK-8 assay was performed to detect the viability of PC12 cells, flow cytometry assay was carried out to detect the apoptosis rate of PC12 cells, dual-luciferase reporter assay was used to definitude the regulatory relationship between miR-96-5p and Tp73, and western blot was used to detect the protein expression of TAp73.

    RESULTS: The result of immunofluorescence staining demonstrated that PC12 cells abundantly expressed Map2, CCK-8 assay illustrated alcohol exposure significantly downregulated the cell viability of PC12 cells, Treatment with miR-96-5p inhibitor induced apoptosis and upregulated the expression of TAp73 in PC12 cells. Contrastingly, miR-96-5p mimic reversed the above effects and downregulation of TAp73 inhibited the apoptosis of PC12 cells.

    CONCLUSION: The present study demonstrated that miR-96-5p participates in alcohol-induced apoptosis in PC12 cells via negatively regulating TAp73.

    Matched MeSH terms: Rats
  15. Wang Z, Tu Z, Xie X, Cui H, Kong KW, Zhang L
    Foods, 2021 Feb 03;10(2).
    PMID: 33546380 DOI: 10.3390/foods10020315
    This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid-liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  16. Chen M, Samuel VP, Wu Y, Dang M, Lin Y, Sriramaneni R, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(2):143-152.
    PMID: 31679277 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029341
    The current study evaluated the cardioprotective activity of genistein in cases of doxorubicin-(Dox) induced cardiac toxicity and a probable mechanism underlying this protection, such as an antioxidant pathway in cardiac tissues. Animals used in this study were categorized into four groups. The first group was treated with sodium carboxymethylcellulose (0.3%; CMC-Na) solution. The second group received Dox (3.0 mg/kg, i.p.) on days 6, 12, 18, and 24. The third and fourth groups received Dox (3 mg/kg, i.p.) on days 6, 12, 18, and 24 and received protective doses of genistein (100 [group 3] and 200 [group 4] mg/kg/day, p.o.) for 30 days. Treatment with genistein significantly improved the altered cardiac function markers and oxidative stress markers. This was coupled with significant improvement in cardiac histopathological features. Genistein enhanced the Nrf2 and HO-1 expression, which showed protection against oxidative insult induced by Dox. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed substantial inhibition of apoptosis by genistein in myocardia. The study showed that genistein has a strong reactive oxygen species scavenging property and potentially (P ≤ .001) decreases the lipid peroxidation as well as inhibits DNA damage in cardiac toxicity induced by Dox. In conclusion, the potential antioxidant effect of genistein may be because of its modulatory effect on Nrf2/HO-1 signalling pathway and by this means exhibits cardioprotective effects from Dox-induced oxidative injury.
    Matched MeSH terms: Rats, Wistar; Rats
  17. Jiang Y, Zhao L, Ma J, Yang Y, Zhang B, Xu J, et al.
    Phytomedicine, 2024 Jan;123:155229.
    PMID: 38006804 DOI: 10.1016/j.phymed.2023.155229
    BACKGROUND: Triphala (TLP), as a Chinese Tibetan medicine composing of Emblica officinalis, Terminalia chebula and Terminalia bellirica (1.2:1.5:1), exhibited hepatoprotective, hypolipidemic and gut microbiota modulatory effects. Nonetheless, its roles in prevention of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and the related mechanistic insights involving the interplay of gut microbiota and hepatic inflammation are not known.

    PURPOSE: The present study seeks to determine if TLP would prevent HFD-induced NAFLD in vivo and its underlying mechanisms from the perspectives of gut microbiota, metabolites, and hepatic inflammation.

    METHODS: TLP was subjected to extraction and chemo-profiling, and in vivo evaluation in HFD-fed rats on hepatic lipid and inflammation, intestinal microbiota, short-chain fatty acids (SCFAs) and permeability, and body weight and fat content profiles.

    RESULTS: The TLP was primarily constituted of gallic acid, corilagin and chebulagic acid. Orally administered HFD-fed rats with TLP were characterized by the growth of Ligilactobacillus and Akkermansia, and SCFAs (acetic/propionic/butyric acid) secretion which led to increased claudin-1 and zonula occludens-1 expression that reduced the mucosal permeability to migration of lipopolysaccharides (LPS) into blood and liver. Coupling with hepatic cholesterol and triglyceride lowering actions, the TLP mitigated both inflammatory (ALT, AST, IL-1β, IL-6 and TNF-α) and pro-inflammatory (TLR4, MYD88 and NF-κB P65) activities of liver, and sequel to histopathological development of NAFLD in a dose-dependent fashion.

    CONCLUSION: TLP is promisingly an effective therapy to prevent NAFLD through modulating gut microbiota, mucosal permeability and SCFAs secretion with liver fat and inflammatory responses.

    Matched MeSH terms: Rats
  18. Syamimi Zaini N, Karim R, Abdull Razis AF, Saulol Hamid NF, Zawawi N
    Food Res Int, 2022 Dec;162(Pt A):111988.
    PMID: 36461229 DOI: 10.1016/j.foodres.2022.111988
    Kenaf (Hibiscus cannabinus L.) seed is a non-conventional edible oilseed that can be valorized into various food products. There is a recent discovery of kenaf seed beverage (KSB) potential as a novel plant-based beverage. KSB had less crude protein than soybean (SB)but more carbohydrate, magnesium, and phosphorus contents.Levels of crude fat, phytates, oxalates, total saponins, and lipid peroxidability in KSB were lower than SB. Sugar content between KSB and SB were comparable, while antioxidant properties of KSB were superior. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis detected gluconic acid, citric acid, palmitic acid, oleic acid, and 13-hydroxyoctadecadienoic acid in both KSB and SB. Considering its novelty, acute and subacute oral toxicity assessments in male Sprague Dawley rats were conducted. The acute toxicity assessment was performed at a single dose of 9.2 ml/kg body weight of KSB. In the following subacute toxicity assessment, different groups of rats consumed different doses of KSB (3.1, 6.1, and 9.2 ml/kg body weight) daily for 28 days. Rats presented normal behavioral and physiological states in both toxicity studies. Growth, food and water intakes, organ weight, and hematological parameters were unaffected. No mortality was reported. Several alterations in serum biochemical parameters were within the normal range, and unassociated with histopathological changes. The oral lethal dose (LD50) and the no-observed-adverse-effect-level (NOAEL) of KSB in rats was greater than 9.2 ml/kg (=1533 mg/kg) body weight. Interestingly, KSB exhibited comparable effects with soybean beverage (SB) on high-density lipoprotein cholesterol and triglycerides which worth further research Follow-up toxicity assessments in animals and human trials are also recommended to ascertain its long term safety.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  19. Nazemian V, Manaheji H, Sharifi AM, Zaringhalam J
    Cell Mol Biol (Noisy-le-grand), 2018 Jan 31;64(1):19-26.
    PMID: 29412789 DOI: 10.14715/cmb/2018.64.2.5
    Neuroinflammation plays a crucial role in expression of symptoms of numerous autoimmune and neurodegenerative diseases such as pain during rheumatoid arthritis. Overproduction of pro-inflammatory cytokines and activation of intracellular signaling pathways have been strongly implicated in the generation of pathological pain states, particularly at central nervous system sites and induction of spinal neuroinflammatory symptoms. The wide ranges of research to define new therapeutic approaches, including neuroimmune-modulators like stem cells are in progress. Mesenchymal stem cells conditioned medium (MSC-CM) has anti-inflammatory factors which can regulate the immune responses. The aim of this study was to investigate the effect of administration of MSC-CM on behavioral, cellular and molecular aspects of adjuvant-induced arthritis in male Wistar rats. Complete Freund's adjuvant (CFA)-induced arthritis (AA) was caused by single subcutaneous injection of CFA into the rat's hind paw on day 0. MSC-CM was administered daily (i.p.) and during the 21 days of the study after injection. Hyperalgesia, Edema, Serum TNF-α levels and p38MAPK and NF-κB activities were assessed on days 0,7,14 and 21 of the study. The results of this study indicated the role of MSC-CM in reducing inflammatory symptoms, serum TNF-α levels and activity of intracellular signaling pathway factors during different phases of inflammation caused by CFA. It seems that MSC-CM treatment due to its direct effects on inhibition of intracellular signaling pathways and pro-inflammatory cytokines can alleviate inflammatory symptoms and pain during CFA-induced arthritis.
    Matched MeSH terms: Rats, Wistar
  20. Pramana IGAN, Hariani L, Zarasade L
    Med J Malaysia, 2023 Jul;78(4):484-487.
    PMID: 37518916
    INTRODUCTION: Effective antiseptic use is essential in healthcare settings to prevent the spread of diseases, especially in areas with high patient traffic and exposure to various pathogens. One essential pathogenic germ is Acinetobacter baumannii. Octenidine and povidone-iodine have been demonstrated to be effective against A. baumannii in vitro. This study will compare octenidine dihydrochloride and povidone-iodine as wound-cleansing solutions for wounds contaminated with A. baumannii in vivo.

    MATERIALS AND METHODS: Twenty-four rats were divided into three groups: normal saline, octenidine dihydrochloride and povidone-iodine. Wounds were made on the rats' backs, and A. baumannii germs were inoculated into the wounds. After 3 hours, the wound was irrigated with wound cleansing solution according to the group for 30 seconds. Each wound was taken swab culture before and after wound irrigation and tissue culture 5 hours after wound irrigation.

    RESULTS: All specimens showed bacterial colony growth with a median value of 1.22 × 105 CFU before irrigation. Wound irrigation with normal saline did not reduce colony counts, while there was a 3-log reduction to 5-log reduction in the octenidine and povidone-iodine groups. Statistically, there was no significant difference in the mean number of colonies between the octenidine and povidone-iodine groups after irrigation (p = 0.535). However, 3 hours after irrigation, all specimens that experienced 3-log reduction showed regrowth to more than 1 × 105 CFU. In contrast, specimens subjected to 5-log reduction did not exhibit any regrowth.

    CONCLUSION: The antiseptic effectiveness of octenidine dihydrochloride is equivalent to povidone-iodine in eradicating A. baumannii colonies in wounds in vivo.

    Matched MeSH terms: Rats, Wistar; Rats
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links