Displaying publications 1 - 20 of 1265 in total

Abstract:
Sort:
  1. Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, et al.
    Int J Mol Sci, 2021 Sep 29;22(19).
    PMID: 34638895 DOI: 10.3390/ijms221910550
    Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.
    Matched MeSH terms: Rats, Sprague-Dawley
  2. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: Rats, Sprague-Dawley
  3. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

    Matched MeSH terms: Rats, Sprague-Dawley
  4. Abood WN, Al-Henhena NA, Najim Abood A, Al-Obaidi MM, Ismail S, Abdulla MA, et al.
    Bosn J Basic Med Sci, 2015 05 12;15(2):25-30.
    PMID: 26042509 DOI: 10.17305/bjbms.2015.39
    The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.
    Matched MeSH terms: Rats, Sprague-Dawley
  5. Laila L, Febriyenti F, Salhimi SM, Baie S
    Int Wound J, 2011 Oct;8(5):484-91.
    PMID: 21722317 DOI: 10.1111/j.1742-481X.2011.00820.x
    Haruan (Channa striatus) is a type of fresh water fish in Malaysia that is known to promote wound healing. Haruan water extract has been formulated in an aerosol system which can produce a film for wound dressing. As topical preparation, Haruan spray needs to be evaluated in terms of the possibility to cause irritation reaction or toxic response. Three experiments were carried out to evaluate the safety of Haruan spray which are Primary Skin Irritation test, Intracutaneous test and Systemic Injection test. The result shows that Haruan spray gave no significant responses to all the above tests. The investigation of the effect of Haruan spray as wound dressing in the healing process was performed in Sprague-Dawley rats where 6-cm long full-thickness incision wound and burn wound were made on the back of the animals. Haruan spray was tested and compared with blank formula as control. Tensile strength test of treated wound was carried out at the 3rd, 6th, 9th and 12th day after wounding and treatment. The burn wounds contraction was measured daily for 21 days. Results showed that haruan water extract spray formula is not only effective but also safe for application to both incision and burn wounds.
    Matched MeSH terms: Rats, Sprague-Dawley
  6. Sasidharan S, Logeswaran S, Latha LY
    Int J Mol Sci, 2012;13(1):336-47.
    PMID: 22312255 DOI: 10.3390/ijms13010336
    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.
    Matched MeSH terms: Rats, Sprague-Dawley
  7. Khoo YT, Halim AS, Singh KK, Mohamad NA
    PMID: 20815896 DOI: 10.1186/1472-6882-10-48
    Full-thickness burn wounds require excision and skin grafting. Multiple surgical procedures are inevitable in managing moderate to severe full-thickness burns. Wound bed preparations prior to surgery are necessary in order to prevent wound infection and promote wound healing. Honey can be used to treat burn wounds. However, not all the honey is the same. This study aims to evaluate the wound contraction and antibacterial properties of locally-produced Tualang honey on managing full-thickness burn wounds in vivo.
    Matched MeSH terms: Rats, Sprague-Dawley
  8. Hamezah HS, Durani LW, Ibrahim NF, Yanagisawa D, Kato T, Shiino A, et al.
    Exp Gerontol, 2017 12 01;99:69-79.
    PMID: 28918364 DOI: 10.1016/j.exger.2017.09.008
    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age.
    Matched MeSH terms: Rats, Sprague-Dawley
  9. Choo CY, Sulong NY, Man F, Wong TW
    J Ethnopharmacol, 2012 Aug 1;142(3):776-81.
    PMID: 22683902 DOI: 10.1016/j.jep.2012.05.062
    The leaves of Ficus deltoidea are used as a traditional medicine by diabetes patients in Malaysia.
    Matched MeSH terms: Rats, Sprague-Dawley
  10. Zakaria S, Mat-Husain SZ, Ying-Hwey K, Xin-Kai K, Mohd-Badawi A, Abd-Ghani NA, et al.
    Iran J Basic Med Sci, 2017 Dec;20(12):1360-1367.
    PMID: 29238472 DOI: 10.22038/IJBMS.2017.9610
    Objectives: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats.

    Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I) control group; (II) alcohol (3g/kg) + normal saline; (III) alcohol (3g/kg) + olive oil; (IV) alcohol (3g/kg) + alpha-tocopherol (60mg/kg) and (V) alcohol (3g/kg) + palm vitamin E (60mg/kg). The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar) and left tibia bones were harvested for bone mineral measurement.

    Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young's modulus) and bone minerals (bone calcium and magnesium) compared to control group (P<0.05). Palm vitamin E was able to improve bone biomechanical parameters by increasing the maximum force, ultimate stress and Young's modulus (P<0.05) while alpha-tocopherol was not able to. Both alpha-tocopherol and palm vitamin E were able to significantly increase tibia calcium and magnesium content while only alpha-tocopherol caused significant increase in lumbar calcium content (P<0.05).

    Conclusion: Both palm vitamin E and alpha-tocopherol improved bone mineral content which was reduced by alcohol. However, only palm vitamin E was able to improve bone strength in alcohol treated rats.

    Matched MeSH terms: Rats, Sprague-Dawley
  11. Shuid AN, Mehat Z, Mohamed N, Muhammad N, Soelaiman IN
    J. Bone Miner. Metab., 2010 Mar;28(2):149-56.
    PMID: 19779668 DOI: 10.1007/s00774-009-0122-2
    Recently, vitamin E has been found to promote the bone structure of nicotine-treated rats well above their baseline values, thus suggesting that vitamin E may have some anabolic action. A bone anabolic agent acts by improving the bone structure leading to stronger bone. To assess the possible anabolic action vitamin E on bone, we supplemented alpha-tocopherol (ATF) or gamma-tocotrienol (GTT) at 60 mg/kg or vehicle [normal control (NC) group] for 4 months to normal male rats and measured their bone structure and biomechanical properties. Histomorphometric analysis revealed that vitamin E-supplemented rats have better trabecular volume, thickness, number, and separation than rats receiving vehicle only. For the first time we reported that GTT improves all the parameters of bone biomechanical strength, while ATF only improved some of the parameters compared to the NC group. Vitamin E supplementation, especially with the gamma isomer, improves bone structure, which contributed to stronger bone. Therefore, vitamin E has the potential to be used as an anabolic agent to treat osteoporosis or as bone supplements for young adults to prevent osteoporosis in later years.
    Matched MeSH terms: Rats, Sprague-Dawley
  12. Norazlina M, Chua CW, Ima-Nirwana S
    Med J Malaysia, 2004 Dec;59(5):623-30.
    PMID: 15889565
    Vitamin E deficiency has been found to impair bone calcification. This study was done to determine the effects of vitamin E deficiency and supplementation on parathyroid hormone, i.e. the hormone involved in bone regulation. Female Sprague-Dawley rats were divided into 4 groups: 1) normal rat chow (RC), 2) vitamin E deficiency (VED), vitamin E deficient rats supplemented with 3) 60 mg/kg alpha-tocotrienol (ATT) and 4) 60 mg/kg (alpha-tocopherol (ATF). Treatment was carried out for 3 months. Vitamin E deficiency caused hypocalcaemia during the first month of the treatment period, increased the parathyroid hormone level in the second month and decreased the bone calcium content in the 4th lumbar bone at the end of the treatment. Vitamin E supplementation (ATT and ATF) failed to improve these conditions. The bone formation marker, osteocalcin, and the bone resorption marker, deoxypyridinoline did not change throughout the study period. In conclusion vitamin E deficiency impaired bone calcium homeostasis with subsequent secondary hyperparathyroidism and vertebral bone loss. Replacing the vitamin E with pure ATF or pure ATT alone failed to correct the changes seen.
    Matched MeSH terms: Rats, Sprague-Dawley
  13. Wee CL, Mokhtar SS, Banga Singh KK, Rasool AHG
    Microvasc Res, 2021 Nov;138:104227.
    PMID: 34324883 DOI: 10.1016/j.mvr.2021.104227
    This study examined the effects of vitamin D deficiency on vascular function and tissue oxidative status in the microcirculation; and whether or not these effects can be ameliorated with calcitriol, the active vitamin D metabolite. Three groups (n = 10 each) of male Sprague Dawley rats were fed for 10 weeks with control diet (CR), vitamin D-deficient diet without (DR), or with oral calcitriol supplementation (0.15 μg/kg) for the last four weeks (DSR). After 10 weeks, rats were sacrificed; mesenteric arterial rings were studied using wire myograph. Oxidative stress biomarkers malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured in the mesenteric arterial tissue. Vascular protein expression of endothelial nitric oxide synthase (eNOS) was determined by Western blotting. Acetylcholine-induced endothelium-dependent relaxation of DR was lower than CR. eNOS expression and SOD activity were lower in mesenteric arterial tissue of DR compared to CR. Calcitriol supplementation to DSR did not ameliorate the above parameters; in fact, augmented endothelium-dependent contraction was observed. Serum calcium was higher in DSR compared to CR and DR. In conclusion, vitamin D deficiency impaired microvascular vasodilation, associated with eNOS downregulation and reduced antioxidant activity. Calcitriol supplementation to vitamin D-deficient rats at the dosage used augmented endothelium-dependent contraction, possibly due to hypercalcaemia.
    Matched MeSH terms: Rats, Sprague-Dawley
  14. Shamaan NA, Kadir KA, Rahmat A, Ngah WZ
    Nutrition, 1998 12 3;14(11-12):846-52.
    PMID: 9834927
    The effects of vitamin C and aloe vera gel extract supplementation on induced hepatocarcinogenesis in male Sprague-Dawley rats (120-150 g) by diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) was investigated. The severity of the carcinogenesis process was determined by measuring gamma-glutamyl transpeptidase (GGT) and the placental form of glutathione S-transferase (GSTP) histochemically in situ and in plasma and liver fractions. In addition, plasma alkaline phosphatase (ALP) and liver microsomal uridine diphosphate glucuronyl transferase (UDPGT) activity were also determined. Administration of DEN/AAF caused an increase in the surface area and number of enzyme-positive foci (both GGT and GSTP) compared with control. Supplementation of vitamin C or aloe vera gel extract to the cancer-induced rats suppressed this increase significantly (P < 0.05; P < 0.001). Increases in liver UDPGT, GGT, and GSTP activities were also observed with cancer induction that were again suppressed with either vitamin C or aloe vera gel supplementation. Plasma GGT in the DEN/AAF rats were determined monthly for the duration of the experiment and found to be reduced as early as 1 mo with aloe vera gel supplementation and 2 mo with vitamin C supplementation. In conclusion, vitamin C and aloe vera gel extract supplementation were found to be able to reduce the severity of chemical hepatocarcinogenesis.
    Matched MeSH terms: Rats, Sprague-Dawley
  15. Phua, P. S. P, Ng, T. K. W., Teh, L. K., Voon, P. T.
    MyJurnal
    Introduction: Inflammation is one of the major cause of cardiovascular disease, obesity, cancer and stroke. Many dietary compounds containing kernel oil or coconut oil with anti-inflammatory effect can delay the onset of these chronic diseases however the underlying mechanism is unclear. Methods: This study compares the effects of 5% virgin palm kernel oil (VPKO), virgin coconut oil (VCO) and refined, bleached, deodorized olive oil (RBDOO) on selected immune markers in healthy sprague dawley (SD) rats (n=16 per treatment) across 8 weeks. Sera were obtained for four major immunological analyses including cluster of differentiation 4 (CD 4), cluster of differentiation 8 (CD 8), interleukin 6 (IL 6), and c reactive protein (CRP). Results were expressed in mean ± standard error of the mean (mean±SE). Results: Eight weeks fat feeding had no significant difference in weight gain across treatments. Interestingly, we observe significant different on the concentration of CD 4 (p=0.001) with the lowest CD 4 level in rats fed with VPKO 3.87±0.65 ng/ml. The concentration of CD 8 in rats fed with VPKO 8.19±0.25 (p=0.001) ng/ml was comparable to VCO fed rats but was found lower than the control group, RBDOO fed rats. Lower T cell count (CD 4 or CD 8) indicates suppression in inflammation. IL-6 and CRP concentration in rat fed with VPKO 10.89±0.22 pg/ml and 118.39±7.13 ng/ml were slightly higher than that of VCO fed rats but were lower than RBDOO fed rats. Conclusion: We postulate that VPKO could be a potential supplement as an alternative to VCO for relieving inflammation and enhancing body immune system.
    Matched MeSH terms: Rats, Sprague-Dawley
  16. Nurul-Iman BS, Kamisah Y, Jaarin K, Qodriyah HM
    PMID: 23861707 DOI: 10.1155/2013/629329
    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.
    Matched MeSH terms: Rats, Sprague-Dawley
  17. Tan CS, Ch'ng YS, Loh YC, Zaini Asmawi M, Ahmad M, Yam MF
    J Ethnopharmacol, 2017 Mar 06;199:149-160.
    PMID: 28161542 DOI: 10.1016/j.jep.2017.02.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza uralensis (G. uralensis) is one of the herbs used in traditional Chinese medicine (TCM) and serves as an envoy medicinal. Since G. uralensis plays a major role in the anti-hypertensive TCM formulae, we believe that G. uralensis might possess vasorelaxation activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxation effect of G. uralensis from various extracts and to study its pharmacology effect.

    MATERIALS AND METHODS: The vasorelaxation effect of G. uralensis extracts were evaluated on thoracic aortic rings isolated from Sprague Dawley rats.

    RESULTS: Among these three extracts of G. uralensis, 50% ethanolic extract (EFG) showed the strongest vasorelaxation activity. EFG caused the relaxation of the aortic rings pre-contracted with phenylephrine either in the presence or absence of endothelium and pre-contracted with potassium chloride in endothelium-intact aortic ring. Nω-nitro-L-arginine methyl ester, methylene blue, or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one inhibit the vasorelaxation effect of EFG in the presence of endothelium. On the other hand, in the presence of the potassium channel blockers (tetraethylammonium and barium chloride), the vasorelaxation effect of EFG was not affected, but glibenclamide and 4-aminopyridine did inhibit the vasorelaxation effect of EFG. With indomethacin, atropine and propranolol, the vasorelaxation effect by EFG was significantly reduced. EFG was also found to be effective in reducing Ca(2+) release from sarcoplasmic reticulum and the blocking of calcium channels.

    CONCLUSIONS: The results obtained suggest that EFG is involved in the NO/sGC/cGMP pathway.

    Matched MeSH terms: Rats, Sprague-Dawley
  18. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    Pharm Biol, 2017 Dec;55(1):2083-2094.
    PMID: 28832263 DOI: 10.1080/13880209.2017.1357735
    CONTEXT: Vernonia amygdalina Del. (VA) (Asteraceae) is commonly used to treat hypertension in Malaysia.

    OBJECTIVE: This study investigates the vasorelaxant mechanism of VA ethanol extract (VAE) and analyzes its tri-step FTIR spectroscopy fingerprint.

    MATERIALS AND METHODS: Dried VA leaves were extracted with ethanol through maceration and concentrated using rotary evaporator before freeze-dried. The vasorelaxant activity and the underlying mechanisms of VAE using the cumulative concentration (0.01-2.55 mg/mL at 20-min intervals) were evaluated on aortic rings isolated from Sprague Dawley rats in the presence of antagonists.

    RESULTS: The tri-step FTIR spectroscopy showed that VAE contains alkaloids, flavonoids, and saponins. VAE caused the relaxation of pre-contracted aortic rings in the presence and absence of endothelium with EC50 of 0.057 ± 0.006 and 0.430 ± 0.196 mg/mL, respectively. In the presence of Nω-nitro-l-arginine methyl ester (EC50 0.971 ± 0.459 mg/mL), methylene blue (EC50 1.203 ± 0.426 mg/mL), indomethacin (EC50 2.128 ± 1.218 mg/mL), atropine (EC50 0.470 ± 0.325 mg/mL), and propranolol (EC50 0.314 ± 0.032 mg/mL), relaxation stimulated by VAE was significantly reduced. VAE acted on potassium channels, with its vasorelaxation effects significantly reduced by tetraethylammonium, 4-aminopyridine, barium chloride, and glibenclamide (EC50 0.548 ± 0.184, 0.158 ± 0.012, 0.847 ± 0.342, and 0.304 ± 0.075 mg/mL, respectively). VAE was also found to be active in reducing Ca2+ released from the sarcoplasmic reticulum and blocking calcium channels.

    CONCLUSIONS: The vasorelaxation effect of VAE involves upregulation of NO/cGMP and PGI2 signalling pathways, and modulation of calcium/potassium channels, and muscarinic and β2-adrenergic receptor levels.

    Matched MeSH terms: Rats, Sprague-Dawley
  19. Yam MF, Tan CS, Shibao R
    Hypertens Res, 2018 Oct;41(10):787-797.
    PMID: 30111856 DOI: 10.1038/s41440-018-0083-8
    Orthosiphon stamineus Benth. (Lambiaceae) is an important traditional plant for the treatment of hypertension. Previous studies have demonstrated that the sinensetin content in O. stamineus is correlated with its vasorelaxant activity. However, there is still very little information regarding the vasorelaxant effect of sinensetin due to a lack of scientific studies. Therefore, the present study was designed to investigate the underlying mechanism of action of sinensetin in vasorelaxation using an in vitro precontraction aortic ring assay. The changes in the tension of the aortic ring preparations were recorded using a force-displacement transducer and the PowerLab system. The mechanisms of the vasorelaxant effect of sinensetin were determined in the presence of antagonists. Sinensetin caused relaxation of the aortic ring precontracted with PE in the presence and absence of the endothelium and with potassium chloride in endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), ODQ (selective soluble guanylate cyclase inhibitor), indomethacin (a nonselective cyclooxygenase inhibitor), tetraethylammonium (nonselective calcium activator K+ channel blocker), 4-aminopyridine (voltage-dependent K+ channel blocker), barium chloride (inwardly rectifying Kir channel blocker), glibenclamide (nonspecific ATP-sensitive K+ channel blocker), atropine (muscarinic receptor blocker), or propranolol (β-adrenergic receptor blocker), the relaxation stimulated by sinensetin was significantly reduced. Sinensetin was also active in reducing Ca2+ release from the sarcoplasmic reticulum (via IP3R) and in blocking calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of sinensetin, which involves the NO/sGC/cGMP and indomethacin pathways, calcium and potassium channels, and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: Rats, Sprague-Dawley
  20. Tan CS, Tew WY, Jingying C, Yam MF
    Chem Biol Interact, 2021 Oct 01;348:109620.
    PMID: 34411564 DOI: 10.1016/j.cbi.2021.109620
    Naringenin is a naturally occurring flavanone (flavonoid) known to have bioactive effects on human health. It has been reported to show cardiovascular effects. This study aimed to investigate the possible vasorelaxant effect of naringenin and the mechanism behind it by using a Sprague Dawley rat aortic ring assay model. Naringenin caused significant vasorelaxation of endothelium-intact aortic rings precontracted with phenylephrine (pD2 = 4.27 ± 0.05; Rmax = 121.70 ± 4.04%) or potassium chloride (pD2 = 4.00 ± 0.04; Rmax = 103.40 ± 3.82%). The vasorelaxant effect decreased in the absence of an endothelium (pD2 = 3.34 ± 0.10; Rmax = 62.29 ± 2.73%). The mechanisms of the vasorelaxant effect of naringenin in the presence of antagonists were also investigated. Indomethacin, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, atropine, 4-aminopyridine, Nω-nitro-l-arginine methyl ester, glibenclamide and propranolol significantly reduced the relaxation stimulated by naringenin in the presence of endothelium. Besides that, the effect of naringenin on the voltage-operated calcium channel (VOCC) in the endothelium-intact aortic ring was studied, as was intracellular Ca2+ release from the sarcoplasmic reticulum (SR) in the endothelium-denuded aortic ring. The results showed that naringenin also significantly blocked the entry of Ca2+ via the VOCC, SERCA/SOCC and suppressed the release of Ca2+ from the SR. Thus, the vasorelaxant effect shown by naringenin mostly involve the COX pathway, the endothelium-dependent pathway via NO/sGC/prostaglandin, calcium and potassium channels.
    Matched MeSH terms: Rats, Sprague-Dawley
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links