Displaying publications 1 - 20 of 307 in total

Abstract:
Sort:
  1. Nor Rizan, K., Abdul Manaf ,A., Sabariah, A.R., Siti Aishah, M.A., Noorjahan Banu, M.A., Zubaidah, Z.
    Medicine & Health, 2011;6(1):59-67.
    MyJurnal
    Human papillomavirus (HPV) plays an important role in the pathogenesis of cervical cancer. HPV has been found in 99.7% of cervical cancers worldwide. In Malaysia, it is the second most common cancer among women in all major ethnic groups. The main purpose of this study was to establish the method of SyBrGreen Real-Time PCR and apply it for identification of multiple infections of the two high risk HPV subtypes. In this study, 57 positive samples for HPV 16 and HPV 18 were used to establish a simple
    and sensitive method to detect and identify HPV infection in the cervical neoplasia at different stages of the disease by using real-time ABICycler SyBrGreen 1 technology. The results showed 67 HPV genomes in 57 samples. HPV 16 genome was detected in 55/67 (82%) cases while HPV 18 was detected in 8/67 (12%) cases with 4 cases showing multiple infections of HPV 16 and HPV 18. HPV 16 was the most prevalent followed by HPV 18. Using SyBr Green Real-Time PCR techniques, the results
    showed that DNA melting curve for HPV 16 had a peak around 80.2ºC and Ct value of 20 cycles whereas the DNA melting curve for HPV 18 around 79.2ºC and Ct value of 22 cycles. In conclusion, a SyBr Green Real-Time PCR method has the potential for clinical usage in detection and identification of HPV infection in cervical neoplasia at different stages of the disease.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  2. Chin, Yuet Meng, Arison Mohamad, Zubaidah Zakaria
    MyJurnal
    For many years counting cells and identifying them under the microscope has been the conventional method to determine the number of abnormal and normal cells in cancers. During the last decade, studies have shown that the detection and quantification of residual tumor cells is important in predicting the clinical outcome of several types of hematological malignancies. Detection of
    minimal residual disease (MRD) is now becoming routinely implemented in treatment protocols and is increasingly used for guiding therapy and for evaluation of new treatment modalities (Raanani & Hashomer, 2004). A wide variety of techniques have been developed to detect residual malignant cells beyond the sensitivity of conventional approaches by cell morphology. One of these technology is by real time quantitative (RQ) polymerase chain reaction (PCR) using the Taqman and LightCycler systems.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  3. Chen L, Yao XJ, Xu SJ, Yang H, Wu CL, Lu J, et al.
    Arch Virol, 2018 Nov 29.
    PMID: 30498962 DOI: 10.1007/s00705-018-4112-3
    Coxsackievirus A16 (CV-A16) of the genotypes B1a and B1b have co-circulated in mainland China in the past decades. From 2013 to 2017, a total of 3,008 specimens from 3,008 patients with mild hand, foot, and mouth disease were collected in the present study. Viral RNA was tested for CV-A16 by a real-time RT-PCR method, and complete VP1 sequences and full-length genome sequences of CV-A16 strains from this study were determined by RT-PCR and sequencing. Sequences were analyzed using a series of bioinformatics programs. The detection rate for CV-A16 was 4.1%, 25.9%, 10.6%, 28.1% and 12.9% in 2013, 2014, 2015, 2016 and 2017, respectively. Overall, the detection rate for CV-A16 was 16.5% (497/3008) in this 5-year period in Shenzhen, China. One hundred forty-two (142/155, 91.6%) of the 155 genotype B1 strains in the study belonged to subgenotype B1b, and 13 (13/155, 8.4%) strains belonged to subgenotype B1a. Two strains (CVA16/Shenzhen174/CHN/2017 and CVA16/Shenzhen189/CHN/2017) could not be assigned to a known genotype. Phylogenetic analysis of these two strains and other Chinese CV-A16 strains indicated that these two CV-A16 strains clustered independently in a novel clade whose members differed by 8.4%-11.8%, 8.4%-12.1%, and 14.6%-14.8% in their nucleotide sequences from those of Chinese B1a, B1b, and genotype D strains, respectively. Phylogenetic analysis of global CV-A16 strains further indicated that the two novel CV-A16 strains from this study grouped in a previously uncharacterized clade, which was designated as the subgenogroup B3 in present study. Meanwhile, phylogenetic reconstruction revealed two other new genotypes, B1d and B4, which included a Malaysian strain and two American strains, respectively. The complete genome sequences of the two novel CV-A16 strains showed the highest nucleotide sequence identity of 92.3% to the Malaysian strain PM-15765-00 from 2000. Comparative analysis of amino acid sequences of the two novel CV-A16 strains and their relatives suggested that variations in the nonstructural proteins may play an important role in the evolution of modern CV-A16.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  4. Heng BC, Gong T, Wang S, Lim LW, Wu W, Zhang C
    J Endod, 2017 Mar;43(3):409-416.
    PMID: 28231979 DOI: 10.1016/j.joen.2016.10.033
    INTRODUCTION: Dental follicle stem cells (DFSCs) possess neurogenic potential because they originate from the embryonic neural crest. This study investigated whether neural differentiation of DFSCs can be enhanced by culture on decellularized matrix substrata (NSC-DECM) derived from neurogenesis of human embryonic stem cells (hESCs).

    METHODS: The hESCs were differentiated into neural stem cells (NSCs), and NSC-DECM was extracted from confluent monolayers of NSCs through treatment with deionized water. DFSCs seeded on NSC-DECM, Geltrex, and tissue culture polystyrene (TCPS) were subjected to neural induction during a period of 21 days. Expression of early/intermediate (Musashi1, PAX6, NSE, and βIII-tubulin) and mature/late (NGN2, NeuN, NFM, and MASH1) neural markers by DFSCs was analyzed at the 7-, 14-, and 21-day time points with quantitative real-time polymerase chain reaction. Immunocytochemistry for detection of βIII-tubulin, PAX6, and NGN2 expression by DFSCs on day 7 of neural induction was also carried out.

    RESULTS: Quantitative RT-PCR showed that expression of PAX6, Musashi1, βIII-tubulin, NSE, NGN2, and NFM by DFSCs was enhanced on NSC-DECM versus either the Geltrex or TCPS groups. Immunocytochemistry showed that DFSCs in the NSC-DECM group displayed more intense staining for βIII-tubulin, PAX6, and NGN2 expression, together with more neurite outgrowths and elongated morphology, as compared with either Geltrex or TCPS.

    CONCLUSIONS: DECM derived from neurogenesis of hESCs can enhance the neurogenic potential of DFSCs.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  5. Norsarwany M, Abdelrahman Z, Rahmah N, Ariffin N, Norsyahida A, Madihah B, et al.
    Trop Biomed, 2012 Sep;29(3):479-88.
    PMID: 23018511
    Strongyloidiasis is an infection caused by the intestinal nematode Strongyloides stercoralis. Infected healthy individuals are usually asymptomatic, however it is potentially fatal in immunocompromised hosts due to its capacity to cause an overwhelming hyperinfection. Strongyloidiasis could be missed during routine screening because of low and intermittent larval output in stool and variable manifestations of the symptoms. We present two cases of strongyloidiasis occurring in children with solid organ malignancies suspected to have the infection based on their clinical conditions and treatment history for cancer. Both patients were diagnosed by molecular and serological tests and were successfully treated. Thus, strongyloidiasis in patients undergoing intensive treatment for malignancies should be suspected, properly investigated and treated accordingly.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  6. Abd Jalil A, Khaza'ai H, Nordin N, Mansor N, Zaulkffali AS
    PMID: 29348770 DOI: 10.1155/2017/6048936
    Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer's disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP) in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES) cell cultures were elucidated. A transgenic mouse ES cell line (46C) was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS) was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  7. Muhd Radzi SF, Rückert C, Sam SS, Teoh BT, Jee PF, Phoon WH, et al.
    Sci Rep, 2015;5:14007.
    PMID: 26360297 DOI: 10.1038/srep14007
    Langat virus (LGTV), one of the members of the tick-borne encephalitis virus (TBEV) complex, was firstly isolated from Ixodes granulatus ticks in Malaysia. However, the prevalence of LGTV in ticks in the region remains unknown. Surveillance for LGTV is therefore important and thus a tool for specific detection of LGTV is needed. In the present study, we developed a real-time quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for rapid detection of LGTV. Our findings showed that the developed qRT-PCR could detect LGTV at a titre as low as 0.1 FFU/ml. The detection limit of the qRT-PCR assay at 95% probability was 0.28 FFU/ml as determined by probit analysis (p ≤ 0.05). Besides, the designed primers and probe did not amplify ORF of the E genes for some closely related and more pathogenic viruses including TBEV, Louping ill virus, Omsk hemorrhagic fever virus (OHFV), Alkhurma virus (ALKV), Kyasanur Forest Disease virus (KFDV) and Powassan virus (POWV) which showed the acceptable specificity of the developed assay. The sensitivity of the developed method also has been confirmed by determining the LGTV in infected tick cell line as well as LGTV- spiked tick tissues.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  8. Hassandarvish P, Oo A, Jokar A, Zukiwski A, Proniuk S, Abu Bakar S, et al.
    J Antimicrob Chemother, 2017 09 01;72(9):2438-2442.
    PMID: 28666323 DOI: 10.1093/jac/dkx191
    Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes.

    Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains.

    Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins.

    Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  9. Chin VK, Atika Aziz NA, Hudu SA, Harmal NS, Syahrilnizam A, Jalilian FA, et al.
    J Virol Methods, 2016 10;236:117-125.
    PMID: 27432115 DOI: 10.1016/j.jviromet.2016.07.012
    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  10. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  11. Hartanto FK, Karen-Ng LP, Vincent-Chong VK, Ismail SM, Mustafa WM, Abraham MT, et al.
    Asian Pac J Cancer Prev, 2015;16(3):953-8.
    PMID: 25735388
    BACKGROUND: Expression of KRT13, FAIM2 and CYP2W1 appears to be influenced by risk habits, thus exploring the associations of these genes in oral squamous cell cancer (OSCC) with risk habits, clinico-pathological parameters and patient survival may be beneficial in identifying relevant biomarkers with different oncogenic pathways.

    MATERIALS AND METHODS: cDNAs from 41 OSCC samples with and without risk habits were included in this study. Quantitative real-time PCR was used to analyze KRT13, FAIM2 and CYP2W1 in OSCC. The housekeeping gene (GAPDH) was used as an endogenous control.

    RESULTS: Of the 41 OSCC samples, KRT13 was down-regulated in 40 samples (97.6%), while FAIM2 and CYP2W1 were down-regulated in 61.0% and 48.8%, respectively. Overall, there were no associations between KRT13, FAIM2 and CYP2W1 expression with risk habits, selected socio-demographic and clinico-pathological parameters and patient survival.

    CONCLUSIONS: Although this study was unable to show significance, there were some tendencies in the associations of KRT13, FAIM2 and CYP2W1 expression in OSCC with selected clinic-pathological parameters and survival.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  12. Asing, Ali E, Hamid SB, Hossain M, Ahamad MN, Hossain SM, et al.
    PMID: 27643977
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction*
  13. Mohamed Amin Z, Che Ani MA, Tan SW, Yeap SK, Alitheen NB, Syed Najmuddin SUF, et al.
    Sci Rep, 2019 Sep 30;9(1):13999.
    PMID: 31570732 DOI: 10.1038/s41598-019-50222-z
    The Newcastle disease virus (NDV) strain AF2240 is an avian avulavirus that has been demonstrated to possess oncolytic activity against cancer cells. However, to illicit a greater anti-cancer immune response, it is believed that the incorporation of immunostimulatory genes such as IL12 into a recombinant NDV backbone will enhance its oncolytic effect. In this study, a newly developed recombinant NDV that expresses IL12 (rAF-IL12) was tested for its safety, stability and cytotoxicity. The stability of rAF-IL12 was maintained when passaged in specific pathogen free (SPF) chicken eggs from passage 1 to passage 10; with an HA titer of 29. Based on the results obtained from the MTT cytotoxic assay, rAF-IL12 was determined to be safe as it only induced cytotoxic effects against normal chicken cell lines and human breast cancer cells while sparing normal cells. Significant tumor growth inhibition (52%) was observed in the rAF-IL12-treated mice. The in vivo safety profile of rAF-IL12 was confirmed through histological observation and viral load titer assay. The concentration and presence of the expressed IL12 was quantified and verified via ELISA assay. In summary, rAF-IL12 was proven to be safe, selectively replicating in chicken and cancer cells and was able to maintain its stability throughout several passages; thus enhancing its potential as an anti-breast cancer vaccine.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  14. Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB
    Trop Life Sci Res, 2018 Mar;29(1):71-85.
    PMID: 29644016 MyJurnal DOI: 10.21315/tlsr2018.29.1.5
    Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  15. Rothan HA, Djordjevic I, Bahrani H, Paydar M, Ibrahim F, Abd Rahmanh N, et al.
    Int J Med Sci, 2014;11(10):1029-38.
    PMID: 25136258 DOI: 10.7150/ijms.8895
    Platelet rich plasma clot- releasate (PRCR) shows significant influence on tissue regeneration in clinical trials. Although, the mechanism of PRCR effect on fibroblast differentiation has been studied on 2D culture system, a detailed investigation is needed to establish the role of PRCR in cell seeded in 3D scaffolds. Therefore, a study was conducted to evaluate the influence of PRCR in fibroblasts (DFB) differentiation and extracellular matrix formation on both 3D and 2D culture systems. Cell viability was measured using MTT assay and DFB differentiation was evaluated by determining the expression levels of nucleostamin and alpha smooth muscle actin (α-SMA), using indirect immunostaining and Western blotting. The expression levels of extracellular matrix genes (collagen-I, collagen-III, fibronectin and laminin) and focal adhesion formation gene (integrin beta-1) were measured using Real-time PCR. The PRCR at 10% showed significant effect on cells viability compared with 5% and 20% in both culture environments. The decrease in the expression levels of nucleostamin and the increase in α-SMA signify the DFB differentiation to myofibroblast-like cells that was prominently greater in 3D compared to 2D culture. In 3D culture systems, the total collage production, expression levels of the extracellular matrix gene and the focal adhesion gene were increased significantly compared to 2D culture. In conclusion, 3D culture environments enhances the proliferative and differentiation effects of PRCR on DFB, thereby potentially increases the efficacy of DFB for future tissue engineering clinical application.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  16. Othman S, Rahman NA, Yusof R
    Virus Res, 2012 Jan;163(1):238-45.
    PMID: 22001567 DOI: 10.1016/j.virusres.2011.09.040
    Despite aggressive efforts in dengue research, the control of dengue diseases and discovery of therapeutics against them await complete elucidation of its complex immune-pathogenesis. Unlike many viruses that escape the host's immune responses by suppressing the major histocompatibility complex (MHC) Class I pathway, many Flaviviruses up-regulate the cell surface expression of MHC Class I complex. We recently reported MHC Class I HLA-A2 promoter activation by all serotypes of dengue virus (DV). The mechanism by which DV regulates this is further explored here in HepG2 human liver cell line. Using real-time PCR, evidence that, similar to infections by other Flaviviruses, DV infection has the ability to up-regulate the MHC Class I transcription and mRNA synthesis, is presented. The region responsive towards DV infection of all serotypes was mapped to the Class I Regulatory Complex (CRC) of the HLA-A2 promoter. Competition electrophoretic mobility shift assay (EMSA) with NFκB probe established the presence of specific DNA-protein complex in DV-infected nuclear extracts. Antibody-supershift assays identified the MHC Class I promoter activation by DV to occur through binding of p65/p50 heterodimers and p65 homodimers to κB1 and κB2 cis-acting elements, respectively, within the CRC, and not with the interferon consensus sequence (ICS). This study presents evidence of MHC Class I gene modulation by DV, hence providing a better understanding of dengue immune-pathogenesis that would consequently facilitate the discovery of antiviral therapeutics against dengue.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  17. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  18. Awang H, Hamzah FH, Ahmad MH, Mahmood MF, Wahab A, Embong K, et al.
    Infect Dis (Lond), 2021 05;53(5):390-392.
    PMID: 33512265 DOI: 10.1080/23744235.2021.1876913
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  19. Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H
    Plant Physiol, 2015 Sep;169(1):391-402.
    PMID: 26152712 DOI: 10.1104/pp.15.00943
    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  20. Vengadesh, L., Son, R., Yoke-Kqueen, C.
    MyJurnal
    Vibrio cholerae still represents a significant threat to human health worldwide despite the advances in hygiene, consumer knowledge, food treatment and food processing. In Malaysia, statistics in year 2009 have shown that among the food and water borne diseases, food poisoning has the highest incidence rate of 36.17 per 100,000 populations and with a mortality rate of 0.01 per 100,000 populations. In this study, 22 seafood samples comprising of fish, squid, crustacean and mollusks purchased from wet market and supermarket were analyzed. The Most Probable Number (MPN) and real time PCR was used to enumerate the Vibrio cholerae in seafood sample. The results showed that MPN-real time PCR of the samples from wet market had a maximum of >1100 MPN/g compare to 93 MPN/g enumerated from the MPN plate. The MPN-real time PCR in the samples from supermarket indicated 290 MPN/g as compared to 240 MPN/g enumerated from the MPN plate. The standard curves showed that there was a good linear correlation between the Ct values. The minimum level of detection of Vibrio cholerae standard DNA at targeted gene was 3 x 10-5 ng/μl.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links