Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Zawawi MS, Dharmapatni AA, Cantley MD, McHugh KP, Haynes DR, Crotti TN
    Biochem Biophys Res Commun, 2012 Oct 19;427(2):404-9.
    PMID: 23000414 DOI: 10.1016/j.bbrc.2012.09.077
    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.
    Matched MeSH terms: Receptors, Cell Surface/genetics; Receptors, Cell Surface/metabolism*
  2. Zakaria ZA, Sulaiman MR, Mat Jais AM, Somchit MN
    Can J Physiol Pharmacol, 2005 Jul;83(7):635-42.
    PMID: 16091789
    The effects of an aqueous supernatant of haruan (ASH) (Channa striatus) fillet extract on various antinociception receptor system activities were examined using a mouse abdominal-constriction model. Mice that were pretreated with distilled water, s.c., followed 10 min later by administration of 25%, 50%, and 100% concentration ASH, s.c., produced a significant concentration-dependent antinociceptive activity (p < 0.001). Pretreatment with naloxone (0.3, 1.0, and 3.0 mg/kg body mass), 10 min before ASH administration, failed to block the extract antinociception. Pretreatment of the 100% concentration ASH with mecamylamine (5 mg/kg), pindolol (10 mg/kg), and haloperidol (1 mg/kg) also did not cause any significant change in its antinociception. However, pretreatment with atropine (5 mg/kg), bicuculline (10 mg/kg), phenoxybenzamine (10 mg/kg), and methysergide (5 mg/kg) were found to reverse ASH antinociception. Based on the above findings, the ASH is suggested to contain different types of bioactive compounds that act synergistically on muscarinic, GABAA, alpha-adrenergic, and serotonergic receptor systems to produce the observed antinociception.
    Matched MeSH terms: Receptors, Cell Surface/antagonists & inhibitors
  3. Yong YK, Shankar EM, Westhorpe CL, Maisa A, Spelman T, Kamarulzaman A, et al.
    Medicine (Baltimore), 2016 Aug;95(31):e4477.
    PMID: 27495090 DOI: 10.1097/MD.0000000000004477
    HIV-infected individuals on antiretroviral therapy (ART) are at increased risk of cardiovascular disease (CVD). Given the relationship between innate immune activation and CVD, we investigated the association of single-nucleotide polymorphisms (SNPs) in TLR4 and CD14 and carotid intima-media thickness (cIMT), a surrogate measurement for CVD, in HIV-infected individuals on ART and HIV-uninfected controls as a cross-sectional, case-control study. We quantified the frequency of monocyte subsets (CD14, CD16), markers of monocyte activation (CD38, HLA-DR), and endothelial adhesion (CCR2, CX3CR1, CD11b) by flow cytometry. Plasma levels of lipopolysaccharide, sCD163, sCD14, sCX3CL1, and sCCL2, were measured by ELISA. Genotyping of TLR4 and CD14 SNPs was also performed. The TT genotype for CD14/-260SNP but not the CC/CT genotype was associated with elevated plasma sCD14, and increased frequency of CD11b+CD14+ monocytes in HIV-infected individuals. The TT genotype was associated with lower cIMT in HIV-infected patients (n = 47) but not in HIV-uninfected controls (n = 37). The AG genotype for TLR4/+896 was associated with increased CX3CR1 expression on total monocytes among HIV-infected individuals and increased sCCL2 and fibrinogen levels in HIV-uninfected controls. SNPs in CD14/-260 and TLR4/+896 were significantly associated with different markers of systemic and monocyte activation and cIMT that differed between HIV-infected participants on ART and HIV-uninfected controls. Further investigation on the relationship of these SNPs with a clinical endpoint of CVD is warranted in HIV-infected patients on ART.
    Matched MeSH terms: Receptors, Cell Surface/blood
  4. Yap YJ, Wong PF, AbuBakar S, Sam SS, Shunmugarajoo A, Soh YH, et al.
    Clin Chim Acta, 2023 Feb 15;541:117243.
    PMID: 36740088 DOI: 10.1016/j.cca.2023.117243
    Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.
    Matched MeSH terms: Receptors, Cell Surface/genetics
  5. Wong CY, Cheong SK, Mok PL, Leong CF
    Pathology, 2008 Jan;40(1):52-7.
    PMID: 18038316
    AIMS: Adult human bone marrow contains a population of mesenchymal stem cells (MSC) that contributes to the regeneration of tissues such as bone, cartilage, muscle, tendon, and fat. In recent years, it has been shown that functional stem cells exist in the adult bone marrow, and they can contribute to renal remodelling or reconstitution of injured renal glomeruli, especially mesangial cells. The purpose of this study is to examine the ability of MSC isolated from human bone marrow to differentiate into mesangial cells in glomerular injured athymic mice.

    METHODS: MSC were isolated from human bone marrow mononuclear cells based on plastic adherent properties and expanded in vitro in the culture medium. Human mesenchymal stem cells (hMSC) were characterised using microscopy, immunophenotyping, and their ability to differentiate into adipocytes, chondrocytes, and osteocytes. hMSC were then injected into athymic mice, which had induced glomerulonephropathy (GN).

    RESULTS: Test mice (induced GN and infused hMSC) were shown to have anti-human CD105(+) cells present in the kidneys and were also positive to anti-human desmin, a marker for mesangial cells. Furthermore, immunofluorescence assays also demonstrated that anti-human desmin(+) cells in the glomeruli of these test mice were in the proliferation stage, being positive to anti-human Ki-67.

    CONCLUSIONS: These findings indicate that hMSC found in renal glomeruli differentiated into mesangial cells in vivo after glomerular injury occurred.

    Matched MeSH terms: Receptors, Cell Surface/metabolism
  6. Watabe M, Arjunan SNV, Chew WX, Kaizu K, Takahashi K
    Phys Rev E, 2019 Jul;100(1-1):010402.
    PMID: 31499827 DOI: 10.1103/PhysRevE.100.010402
    We propose a computational method to quantitatively evaluate the systematic uncertainties that arise from undetectable sources in biological measurements using live-cell imaging techniques. We then demonstrate this method in measuring the biological cooperativity of molecular binding networks, in particular, ligand molecules binding to cell-surface receptor proteins. Our results show how the nonstatistical uncertainties lead to invalid identifications of the measured cooperativity. Through this computational scheme, the biological interpretation can be more objectively evaluated and understood under a specific experimental configuration of interest.
    Matched MeSH terms: Receptors, Cell Surface
  7. Ubuka T, Parhar IS, Tsutsui K
    Gen Comp Endocrinol, 2018 09 01;265:202-206.
    PMID: 29510150 DOI: 10.1016/j.ygcen.2018.03.004
    Gonadotropin-inhibitory hormone (GnIH) is an inhibitor of the hypothalamic-pituitary-gonadal (HPG) axis. GnIH is also called RFamide-related peptide (RFRP) as GnIH peptides have a characteristic C-terminal LPXRFiamide (X = L or Q) sequence. GnIH is thought to be the mediator of stress by negatively regulating the HPG axis as various stressors increase GnIH mRNA, GnIH peptide or GnIH neuronal activity. On the other hand, GnIH may also mediate behavioral stress responses as GnIH neuronal fibers and GnIH receptors are widely located in the limbic system of telencephalon, diencephalon and midbrain area. Previous studies have shown that intracerebroventricular (i.c.v.) administration of GnIH (RFRP) blocks morphine-induced analgesia in hot plate and formalin injection tests in rats suggesting that GnIH increases sensitivity to pain. GnIH (RFRP) also increases anxiety-like behavior in rats. RNA interference of GnIH gene (GnIH RNAi) increases locomotor activity of white-crowned sparrow and Japanese quail and i.c.v. administration of GnIH decreases GnIH RNAi induced locomotor activity. It was further shown that i.c.v. administration of GnIH (RFRP) decreases aggressive behavior in male quail and sexual behavior in male rats, female white-crowned sparrow and female hamsters. These results suggest that GnIH decreases threat to homeostasis of the organism by increasing pain sensitivity, anxiety and decreasing locomotor activity, aggressive behavior and sexual behavior. GnIH may also mediate the effect of stress on behavior.
    Matched MeSH terms: Receptors, Cell Surface/metabolism
  8. Tukimat Lihan, Nur Fatin Khodri, Muzzneena Ahmad Mustapha, Zulfahmi Ali Rahman, Wan Mohd Razi Idris
    Sains Malaysiana, 2018;47:2241-2249.
    Aktiviti guna tanah di kawasan lembangan adalah salah satu faktor yang mendorong kepada kemerosotan kualiti air
    sungai akibat daripada hakisan tanih. Potensi hakisan tanih di kawasan lembangan Sungai Bilut, Raub, Pahang yang
    menjadi sumber bekalan air minuman utama di daerah Raub boleh ditentukan dengan menggunakan integrasi model
    Semakan Semula Persamaan Kehilangan Tanih Universal (RUSLE) dan Sistem Maklumat Geografi (GIS). Kajian ini
    bertujuan untuk menentukan potensi hakisan tanih dan faktor utama yang mempengaruhi kadar hakisan tanih. Kajian ini
    melibatkan penggunaan data sekunder yang terdiri daripada data hujan, data siri tanih dan topografi bagi menghasilkan
    faktor kehakisan hujan (R), kebolehhakisan tanih (K), serta panjang dan kecuraman cerun (LS). Faktor litupan tumbuhan
    (C) dan amalan pemuliharaan (P) pula dijana daripada imej satelit Landsat 8 (2014). Keputusan kajian menunjukkan
    nilai faktor R di kawasan kajian ialah 8927.68-9775.18 MJ mm ha-1 jam-1 tahun-1, nilai K ialah 0.036-0.500 tan jam-1
    MJ-1 mm-1, nilai LS ialah 0-514, nilai C ialah 0.03-0.80 dan nilai P ialah 0.1-0.7. Kawasan yang mempunyai potensi
    hakisan sangat rendah hingga rendah meliputi 81%, manakala potensi hakisan tanih sederhana hingga sangat tinggi
    meliputi 19% daripada keseluruhan kawasan kajian. Model yang dihasilkan mempunyai ketepatan sebanyak 81%. Faktor
    utama yang mempengaruhi berlakunya hakisan tanih di kawasan kajian adalah faktor topografi, litupan tumbuhan dan
    kebolehhakisan tanih. Keputusan menunjukkan analisis integrasi RUSLE dan GIS berpotensi dalam penentuan potensi
    hakisan tanih untuk kawasan luas yang mempunyai pelbagai jenis guna tanah, topografi dan jenis tanih.
    Matched MeSH terms: Receptors, Cell Surface
  9. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, et al.
    Cell Biol Int, 2011 Mar;35(3):221-6.
    PMID: 20946106 DOI: 10.1042/CBI20100326
    MSCs (mesenchymal stem cells) promise a great potential for regenerative medicine due to their unique properties of self-renewal, high plasticity, modulation of immune response and the flexibility for genetic modification. Therefore, the increasing demand for cellular therapy necessitates a larger-scale production of MSC; however, the technical and ethical issues had put a halt on it. To date, studies have shown that MSC could be derived from human UC (umbilical cord), which is once considered as clinical waste. We have compared the two conventional methods which are classic enzymatic digestion and explant method with our newly tailored enzymatic-mechanical disassociation method to generate UC-MSC. The generated UC-MSCs from the methods above were characterized based on their immunophenotyping, early embryonic transcription factors expression and mesodermal differentiation ability. Our results show that enzymatic-mechanical disassociation method increase the initial nucleated cell yield greatly (approximately 160-fold) and maximized the successful rate of UC-MSC generation. Enzymatic-mechanical disassociation-derived UC-MSC exhibited fibroblastic morphology and surface markers expression of CD105, CD73, CD29, CD90 and MHC class I. Furthermore, these cells constitutively express early embryonic transcription factors (Nanog, Oct-4, Sox-2 and Rex-1), as confirmed by RT-PCR, indicating their multipotency and high self-renewal capacity. They are also capable of differentiating into osteoblasts and adipocytes when given an appropriate induction. The present study demonstrates a new and efficient approach in generating MSC from UC, hence serving as ideal alternative source of mesenchymal stem cell for clinical and research use.
    Matched MeSH terms: Receptors, Cell Surface/metabolism
  10. Siar CH, Oo VP, Nagatsuka H, Nakano K, Ng KH, Kawakami T
    Eur J Med Res, 2009 Jul 22;14(7):315-9.
    PMID: 19661015
    STATEMENT OF THE PROBLEM: Dysplasia, the morphological yardstick of epithelial precursor lesions, is the collective term for a variety of architectural and cytological changes within the altered oral epithelium. Angiogenic squamous dysplasia (ASD), a distinct morphological characteristic in pre-invasive bronchial lesions, describes the presence of capillary tufts that are closely juxtaposed to and projecting into the dysplastic bronchial epithelium.

    OBJECTIVE: To determine whether ASD-like phenomenon occurs in oral epithelial precursor lesions, and to speculate on its relevance.

    METHODS: Twenty cases each of mild, moderate and severe oral dysplasia (inclusive of carcinoma-in-situ), and 10 normal oral mucosa (normal controls) were serial sectioned for H and E staining, and for microvessel density (MVD) scoring with CD31, CD34 and CD105. Microcapillary pattern images were digitally captured for 3-D reconstruction.

    RESULTS: Oral ASD foci consisting of CD31- and CD34-positive capillary loops abutting onto the overlying dysplastic oral epithelium (and causing it to assume an irregular or papillary surface configuration) were identified in moderate (3/20; 15%) and severe dysplasia (13/20; 65%), but not in normal oral mucosa and mild dysplasia. MVD score demonstrated increasing vascularity as epithelium progressed from normal to severe dysplasia (p<0.05). CD105 demonstrated increase neovascularization in all dysplasia grades (p<0.05).

    CONCLUSIONS: These preliminary findings taken together suggest that: 1. ASD-like phenomenon may be an important intermediary biomarker in oral precursor lesions; and 2. architectural alterations of the entire disturbed mucosa may be a more useful pre-malignancy index.

    Matched MeSH terms: Receptors, Cell Surface/analysis
  11. Shao Y, Dang M, Lin Y, Xue F
    Life Sci, 2019 Aug 15;231:116422.
    PMID: 31059689 DOI: 10.1016/j.lfs.2019.04.048
    This study was performed to evaluate the antidiabetic and wound healing activity of plumbagin in diabetic rats by macroscopical, biochemical, histological, immunohistochemical and molecular methods. Percentage of wound closure and contraction was delayed in diabetic rats when compared to non-diabetic group. There was significant reduction in period of epithelialization, collagen and protein content. Serum insulin level was significantly lowered together with increase in glucose level in diabetic rats. Lipid levels were increased significantly with concomitant decrease in HDL level. The mRNA levels of Nrf2, collagen-1, TGF-β and α-SMA were significantly lowered whereas Keap-1 levels were increased in diabetic rats. The level of lipid peroxides was increased while the levels of antioxidants were lowered significantly. ELISA results reveal upregulated levels of inflammatory markers. Western blot result shows upregulated levels of CD68 and CD163 proteins in wound area of diabetic rats. Histopathological observation revealed increased inflammatory cells infiltration in diabetic control. Immunofluorescent staining and immunohistochemical analysis also displayed delayed wound healing in diabetic groups. Diabetic rats treated with 10% and 20% plumbagin showed increased epithelialization, collagen deposition, increased serum insulin level and increased antioxidant status. Lipid peroxides and lipid levels were lowered significantly with increase in HDL level. Inflammatory markers were lowered, and growth factors expressions were increased markedly. Thus, the results of the study indicated that plumbagin administration could improve wound healing activity and could serve as a potent antidiabetic and anti-inflammatory agent.
    Matched MeSH terms: Receptors, Cell Surface
  12. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, et al.
    In Vitro Cell Dev Biol Anim, 2012 Feb;48(2):75-83.
    PMID: 22274909 DOI: 10.1007/s11626-011-9480-x
    Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.
    Matched MeSH terms: Receptors, Cell Surface/biosynthesis
  13. Saifful Kamaluddin Muzakir, Shahidan Radiman
    Sains Malaysiana, 2011;40:1123-1127.
    Nanozarah zink oksida telah disintesis menggunakan afrons gas koloid sebagai acuan. Zink sulfat (ZnSO4.7H2O) dan gas ammonia digunakan sebagi bahan tindak balas. Masa pengeraman yang dikaji adalah 2 jam dan 18 jam. Daripada analisis mikroskop elektron imbasan, morfologi nanohelaian dapat diperhatikan dengan ketebalan helaian 125 nm hingga 200 nm. Daripada analisis spektroskopi ultra lembayung-boleh nampak, saiz purata yang dianggarkan bagi sampel nanozarah zink oksida yang disintesis dengan masa pengeraman 2 jam adalah 2.03 nm dan 2.1 nm untuk sampel yang dieramkan selama 18 jam.
    Matched MeSH terms: Receptors, Cell Surface
  14. Putaporntip C, Kuamsab N, Jongwutiwes S
    Infect Genet Evol, 2016 Oct;44:367-375.
    PMID: 27480919 DOI: 10.1016/j.meegid.2016.07.040
    Plasmodium knowlesi and P. cynomolgi are simian malaria parasites capable of causing symptomatic human infections. The interaction between the Duffy binding protein alpha on P. knowlesi merozoite and the Duffy-antigen receptor for chemokine (DARC) on human and macaque erythrocyte membrane is prerequisite for establishment of blood stage infection whereas DARC is not required for erythrocyte invasion by P. cynomolgi. To gain insights into the evolution of the PkDBP gene family comprising PkDBPα, PkDBPβ and PkDBPγ, and a member of the DBP gene family of P. cynomolgi (PcyDBP1), the complete coding sequences of these genes were analyzed from Thai field isolates and compared with the publicly available DBP sequences of P. vivax (PvDBP). The complete coding sequences of PkDBPα (n=11), PkDBPβ (n=11), PkDBPγ (n=10) and PcyDBP1 (n=11) were obtained from direct sequencing of the PCR products. Nucleotide diversity of DBP is highly variable across malaria species. PcyDBP1 displayed the greatest level of nucleotide diversity while all PkDBP gene members exhibited comparable levels of diversity. Positive selection occurred in domains I, II and IV of PvDBP and in domain V of PcyDBP1. Although deviation from neutrality was not detected in domain II of PkDBPα, a signature of positive selection was identified in the putative DARC binding site in this domain. The DBP gene families seem to have arisen following the model of concerted evolution because paralogs rather than orthologs are clustered in the phylogenetic tree. The presence of identical or closely related repeats exclusive for the PkDBP gene family suggests that duplication of gene members postdated their divergence from the ancestral PcyDBP and PvDBP lineages. Intragenic recombination was detected in all DBP genes of these malaria species. Despite the limited number of isolates, P. knowlesi from Thailand shared phylogenetically related domain II sequences of both PkDBPα and PkDBPγ with those from Peninsular Malaysia, consistent with their geographic proximity.
    Matched MeSH terms: Receptors, Cell Surface
  15. Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VRMT, Othman I, Shaikh MF
    Eur J Pharmacol, 2019 Sep 05;858:172487.
    PMID: 31229535 DOI: 10.1016/j.ejphar.2019.172487
    High mobility group box 1 (HMGB1) is a ubiquitous protein, released passively by necrotic tissues or secreted actively by stressed cells. Extracellular HMGB1 is a typical damage-associated molecular pattern (DAMP) molecule which generates different redox types through binding with several receptors and signalling molecules, aggravating a range of cellular responses, including inflammation. HMGB1 is reported to participate in the pathogenesis of inflammatory diseases, through the interaction with pivotal transmembrane receptors, including the receptor for advanced glycation end products (RAGE) and toll-like receptor-4 (TLR-4). This review aims to highlight the role of HMGB1 in the innate inflammatory response describing its interaction with several cofactors and receptors that coordinate its downstream effects. Novel and underexplored HMGB1 binding molecules that have been actively involved in HMGB1-mediated inflammatory diseases/conditions with therapeutic potential are further discussed.
    Matched MeSH terms: Receptors, Cell Surface/metabolism*
  16. Park YG, Choi J, Song I, Park SY, Seol JW, Jackson CJ
    Sains Malaysiana, 2017;46:1895-1902.
    Rheumatoid arthritis (RA) is a chronic disease characterized by inflammation of the joints and their lining or synovium. Previous studies showed that the synovium in RA patients is more hypoxic than normal synovium. Activated protein C (APC) has anticoagulant and anti-inflammatory effects and is highly expressed in the joints of RA patients. We examined the effect of APC on RA and normal synovial fibroblasts under hypoxic conditions. Human synovial fibroblasts were isolated from the synovial tissues of RA patients and normal controls and cells were exposed to recombinant APC under normoxic (21% oxygen) or hypoxic (1% oxygen) conditions. Cell proliferation was measured using MTT assays. Cell lysates and conditioned media were collected and assayed for matrix metalloproteinase (MMP)-2, MMP-9 and p38 using zymography and western blots. Proliferation of both normal and RA synovial fibroblasts dose-dependently increased after APC treatment in normoxic conditions. Under hypoxia, APC enhanced RA cell proliferation but had no effect on normal fibroblasts. MMP-2 production and activation were significantly augmented by APC in both cell types under normoxia and hypoxia conditions. However, activated MMP-2 was more reduced in cells under hypoxia than normoxia. APC substantially reduced the phosphorylation of p38 in normal and RA synovial fibroblasts under hypoxia. No difference in p38 phosphorylation was observed under normoxia. The receptor for APC, endothelial protein C receptor (EPCR), was elevated in normal fibroblasts under hypoxic conditions whereas in RA cells, EPCR was highly expressed under both normoxic and hypoxic conditions. We found that hypoxia enhanced the effect of APC on RA synovial fibroblasts through activation of MMP2 and inhibition of p38 phosphorylation. Our results suggested that APC may suppress joint destruction and progression of inflammation in a hypoxic RA environment.
    Matched MeSH terms: Receptors, Cell Surface
  17. Ng HF, Chin KF, Chan KG, Ngeow YF
    Genome, 2015 Jun;58(6):315-21.
    PMID: 26284904 DOI: 10.1139/gen-2015-0028
    suPLAUR is the transcript variant that encodes the soluble form of the urokinase plasminogen activator surface receptor (suPLAUR). This soluble protein has been shown to enhance leukocyte migration and adhesion, and its circulatory level is increased in inflammatory states. In this pilot study, we used RNA-Seq to examine the splicing pattern of PLAUR in omental adipose tissues from obese and lean individuals. Of the three transcript variants of the PLAUR gene, only the proportion of suPLAUR (transcript variant 2) increases in obesity. After removing the effects of gender and age, the expression of suPLAUR is positively correlated with body mass index. This observation was validated using RT-qPCR with an independent cohort of samples. Additionally, in our RNA-Seq differential expression analysis, we also observed, in obese adipose tissues, an up-regulation of genes encoding other proteins involved in the process of chemotaxis and leukocyte adhesion; of particular interest is the integrin beta 2 (ITGB2) that is known to interact with suPLAUR in leukocyte adhesion. These findings suggest an important role for suPLAUR in the recruitment of immune cells to obese adipose tissue, in the pathogenesis of obesity.
    Matched MeSH terms: Receptors, Cell Surface/genetics*; Receptors, Cell Surface/metabolism
  18. Muh F, Lee SK, Hoque MR, Han JH, Park JH, Firdaus ER, et al.
    Malar J, 2018 Jul 27;17(1):272.
    PMID: 30049277 DOI: 10.1186/s12936-018-2420-4
    BACKGROUND: The rapid process of malaria erythrocyte invasion involves ligand-receptor interactions. Inducing antibodies against specific ligands or receptors that abrogate the invasion process is a key challenge for blood stage vaccine development. However, few candidates were reported and remain to be validated for the discovery of new vaccine candidates in Plasmodium knowlesi.

    METHODS: In order to investigate the efficacy of pre-clinical vaccine candidates in P. knowlesi-infected human cases, this study describes an in vitro invasion inhibition assay, using a P. knowlesi strain adapted to in vitro growth in human erythrocytes, PkA1-H.1. Recombinant proteins of P. knowlesi Duffy binding protein alpha (PkDBPα) and apical membrane antigen 1 (PkAMA1) were produced in Escherichia coli system and rabbit antibodies were generated from immune animals.

    RESULTS: PkDBPα and PkAMA1 recombinant proteins were expressed as insoluble and produced as a functional refolded form for this study. Antibodies against PkDBPα and PkAMA1 specifically recognized recombinant proteins and native parasite proteins in schizont-stage parasites on the merozoite organelles. Single and combination of anti-PkDBPα and anti-PkAMA1 antibodies elicited strong growth inhibitory effects on the parasite in concentration-dependent manner. Meanwhile, IgG prevalence of PkDBPα and PkAMA1 were observed in 13.0 and 46.7% in human clinical patients, respectively.

    CONCLUSION: These data provide support for the validation of in vitro growth inhibition assay using antibodies of DBPα and AMA1 in human-adapted P. knowlesi parasite PkA1-H.1 strain.

    Matched MeSH terms: Receptors, Cell Surface/immunology*
  19. Mohd-Lila MA, Yee LK, Cen LS, Bala JA, Balakrishnan KN, Allaudin ZN, et al.
    Microb Pathog, 2019 Sep;134:103572.
    PMID: 31163251 DOI: 10.1016/j.micpath.2019.103572
    The common physical and chemical methods for controlling rat pest are less than satisfactory and inhumane. Immunocontraception approach has been considered more humane and it can be accomplished by inducing the relevant host immune response that block further development of reproductive gametes. ZP3 proteins are known to play very important role during sperm-ovum fertilization. It is a self-antigen and only localized in female ovaries. Therefore, an immunization with ZP3 protein elsewhere will induce a generalize host immune response against ZP3 protein. This study employed rat ZP3 (rZP3) gene prepared from its cDNA of Rattus rattus diardii. It was delivered and expressed in vivo by naked plamid DNA (DrZP3) or recombinant ZP3-Adenovirus (Ad-rZP3). Expression studies in vitro with DrZP3 or Ad-ZP3 showed rZP3 proteins were successfully expressed in Vero cells. Hyperimmune serum against rZP3 that were prepared by immunizing several rats with purified rZP3-pichia yeast fusion protein showed it blocked sperms from binding DrZP3-transfected Vero cells. Female Sprague Dawley rats immunized with DrZP3 demonstrated a long-term effect for significant reduction of fertility up to 92.6%. Ovaries from rats immunized with DrZP3 were severely atrophied with disappearance of primordial follicles from ovarian cortex with an increased in the amount of oocyte-free cell clusters. Female rats immunized with Ad-rZP3 demonstrated 27% reduction of fertility. The infertility induced by Ad-rZP3 is comparatively low and ineffective. This could be due to a strong host immune response that suppresses the recombinant virus itself resulted in minimum rZP3 protein presentation to the host immune system. As a result, low antibody titers produced against rZP3 is insufficient to block oocytes from maturity and fertilization. Therefore, immunization with DrZP3 for immunocontraception is more effective than Ad-rZP3 recombinant adenovirus. It is proposed to explore further on the use of adenovirus or other alternative viruses to deliver ZP3 protein and for the development of enhanced expression of rZP3 in target host.
    Matched MeSH terms: Receptors, Cell Surface/genetics
  20. Maddirevula S, Alsahli S, Alhabeeb L, Patel N, Alzahrani F, Shamseldin HE, et al.
    Genet Med, 2018 12;20(12):1609-1616.
    PMID: 29620724 DOI: 10.1038/gim.2018.50
    PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized.

    METHODS: Detailed phenotyping and next-generation sequencing (panel and exome).

    RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average.

    CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.

    Matched MeSH terms: Receptors, Cell Surface/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links