Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Abd Aziz CB, Hasim H, Zakaria R, Ahmad AH
    Turk J Pharm Sci, 2020 Dec 23;17(6):620-625.
    PMID: 33389951 DOI: 10.4274/tjps.galenos.2019.21548
    Objectives: This study investigated whether the alterations in memory and hippocampus morphology and levels of malondialdehyde (MDA) and N-methyl-D-aspartate (NMDA) receptor in the hippocampus of adult rats after prenatal stress could be prevented by administration of Tualang honey (TH).

    Materials and Methods: Twenty-four pregnant rats were randomly grouped into a control group (C), a stress group (S), and a stress group treated with TH. Eight male pups from each group were randomly chosen and they were sacrificed at eight or ten weeks of age following the novel object recognition test. Their brains were removed and histological changes and levels of MDA and NMDA receptors in the hippocampus were determined.

    Results: The offspring from TH group showed significantly increased preference index (p<0.05) with higher neuronal number compared to S group. A significantly lower level of MDA and NMDA receptors were shown in TH group (P<0.01; P<0.05 respectively) compared to S group. The parameters investigated were not significantly different between C and TH groups.

    Conclusion: The study has shown that memory alteration, changes in hippocampus histology, MDA and NMDA receptor levels could be prevented by TH administration during prenatal stress. The results suggest the beneficial effects of Tualang honey in prenatally stressed rat offspring.

    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  2. Abd Ghapor AA, Abdul Nasir NA, Iezhitsa I, Agarwal R, Razali N
    Neurosci Res, 2023 Aug;193:1-12.
    PMID: 36796452 DOI: 10.1016/j.neures.2023.02.004
    Adenosine A1 receptors (AA1R) have been shown to counteract N-methyl-D-aspartate (NMDA)-mediated glutamatergic excitotoxicity. In the present study, we investigated the role of AA1R in neuroprotection by trans-resveratrol (TR) against NMDA-induced retinal injury. In total, 48 rats were divided into the following four groups: normal rats pretreated with vehicle; rats that received NMDA (NMDA group); rats that received NMDA after pretreatment with TR; and rats that received NMDA after pretreatment with TR and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an AA1R antagonist. Assessment of general and visual behaviour was performed using the open field test and two-chamber mirror test, respectively, on Days 5 and 6 post NMDA injection. Seven days after NMDA injection, animals were euthanized, and eyeballs and optic nerves were harvested for histological parameters, whereas retinae were isolated to determine the redox status and expression of pro- and anti-apoptotic proteins. In the present study, the retinal and optic nerve morphology in the TR group was protected from NMDA-induced excitotoxic damage. These effects were correlated with the lower retinal expression of proapoptotic markers, lipid peroxidation, and markers of nitrosative/oxidative stress. The general and visual behavioural parameters in the TR group showed less anxiety-related behaviour and better visual function than those in the NMDA group. All the findings observed in the TR group were abolished by administration of DPCPX.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  3. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors; Receptors, N-Methyl-D-Aspartate/metabolism
  4. Buji RI, Abdul Murad NA, Chan LF, Maniam T, Mohd Shahrir MS, Rozita M, et al.
    Lupus, 2018 Apr;27(5):744-752.
    PMID: 29161964 DOI: 10.1177/0961203317742711
    Background Systemic lupus erythematosus (SLE) patients are a high-risk population for suicide. Glutamatergic neurosystem genes have been implicated in the neurobiology of depression in SLE and suicidal behaviour in general. However, the role of glutamate receptor gene polymorphisms in suicidal behaviour among SLE patients remains unclear in the context of established clinical and psychosocial factors. We aimed to investigate the association of NR2A gene polymorphism with suicidal ideation in SLE while accounting for the interaction between clinical and psychosocial factors. Methods A total of 130 SLE patients were assessed for mood disorders (MINI International Neuropsychiatric Interview), severity of depression (Patient Health Questionnaire-9), suicidal behaviour (Columbia-Suicide Severity Rating Scale), socio-occupational functioning (Work and Social Adjustment Scale), recent life events (Social Readjustment Rating Scale) and lupus disease activity (SELENA-SLE Disease Activity Index). Eighty-six out of the 130 study participants consented for NR2A genotyping. Results Multivariable logistic regression showed nominal significance for the interaction effect between the NR2A rs2072450 AC genotype and higher severity of socio-occupational impairment with lifetime suicidal ideation in SLE patients ( p = 0.038, odds ratio = 1.364, 95% confidence interval = 1.018-1.827). However, only the association between lifetime mood disorder and lifetime suicidal ideation remained significant after Bonferroni correction ( p 
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/genetics*
  5. Chia JSM, Izham NAM, Farouk AAO, Sulaiman MR, Mustafa S, Hutchinson MR, et al.
    Front Pharmacol, 2020;11:92.
    PMID: 32194397 DOI: 10.3389/fphar.2020.00092
    Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals. Previously, we demonstrated involvement of the serotonergic system in zerumbone's anti-neuropathic effects. The present study was conducted to determine zerumbone's modulatory potential involving noradrenergic, transient receptor potential vanilloid type 1 (TRPV1) and N-methyl-D-aspartate (NMDA) receptors in chronic constriction injury (CCI)-induced in vitro and lipopolysaccharide (LPS)-induced SH-SY5Y in vitro neuroinflammatory models. von Frey filament and Hargreaves plantar tests were used to assess allodynia and hyperalgesia in the chronic constriction injury-induced neuropathic pain mouse model. Involvement of specific adrenoceptors were investigated using antagonists- prazosin (α1-adrenoceptor antagonist), idazoxan (α2-adrenoceptor antagonist), metoprolol (β1-adrenoceptor antagonist), ICI 118,551 (β2-adrenoceptor antagonist), and SR 59230 A (β3-adrenoceptor antagonist), co-administered with zerumbone (10 mg/kg). Involvement of excitatory receptors; TRPV and NMDA were conducted using antagonists capsazepine (TRPV1 antagonist) and memantine (NMDA antagonist). Western blot was conducted to investigate the effect of zerumbone on the expression of α2A-adrenoceptor, TRPV1 and NMDA NR2B receptors in CCI-induced whole brain samples of mice as well as in LPS-induced SH-SY5Y neuroblastoma cells. Pre-treatment with α1- and α2-adrenoceptor antagonists significantly attenuated both anti-allodynic and anti-hyperalgesic effects of zerumbone. For β-adrenoceptors, only β2-adrenoceptor antagonist significantly reversed the anti-allodynic and anti-hyperalgesic effects of zerumbone. β1-adrenoceptor antagonist only reversed the anti-allodynic effect of zerumbone. The anti-allodynic and anti-hyperalgesic effects of zerumbone were both absent when TRPV1 and NMDA receptors were antagonized in both nociceptive assays. Zerumbone treatment markedly decreased the expression of α2A-adrenoceptor, while an up-regulation was observed of NMDA NR2B receptors. Expression of TRPV1 receptors however did not significantly change. The in vitro study, representing a peripheral model, demonstrated the reduction of both NMDA NR2B and TRPV1 receptors while significantly increasing α2A-adrenoceptor expression in contrast to the brain samples. Our current findings suggest that the α1-, α2-, β1- and β2-adrenoceptors, TRPV1 and NMDA NR2B are essential for the anti-allodynic and antihyperalgesic effects of zerumbone. Alternatively, we demonstrated the plasticity of these receptors through their response to zerumbone's administration.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  6. Hidani Hasim, Che Badariah Abd Aziz, Siti Qusyasyiah Ahmad Suhaimi, Mahaneem Mohamed, Idris Long, Rahimah Zakaria
    MyJurnal
    Introduction: Increased nociceptive responses were shown in the offspring of prenatally stressed rats. Reports have demonstrated the anti-nociceptive effects of Tualang honey in the rat offspring. The present study was done to de- termine whether the modulation of nociceptive behaviour by Tualang honey was mediated by modulating changes in the histology, oxidative stress parameters and N-methyl-D-aspartate (NMDA) receptors in the thalamus of the rat offspring. Methods: Eighteen Sprague Dawley pregnant rats were randomly assigned to control (C), stress (S) and stress-treated with Tualang honey (SH) groups. Stress was given in a form of restraint stress.Tualang honey was given to SH group from first day of pregnancy until delivery. Thirty-three adult male offspring were subjected to formalin test before they were sacrificed. Nociceptive behaviour score, number of neurons, level of oxidative stress parameters and NMDA receptors in the thalamus were analysed by using one-way ANOVA. Results: The study demonstrated a significant decrease in mean nociceptive behaviour score (p
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  7. Hsu CK, Chang SJ, Lim LY, Chang HH, Shei-Dei Yang S
    J Vasc Res, 2023;60(3):137-147.
    PMID: 37285812 DOI: 10.1159/000529916
    N-methyl-D-aspartate (NMDA) receptors were found to be dysfunctional in hypertensive rats. Methyl palmitate (MP) has been shown to diminish the nicotine-induced increase in blood flow in the brainstem. The aim of this study was to determine how MP modulated NMDA-induced increased regional cerebral blood flow (rCBF) in normotensive (WKY), spontaneously hypertensive (SHR), and renovascular hypertensive (RHR) rats. The increase in rCBF after the topical application of experimental drugs was measured using laser Doppler flowmetry. Topical NMDA application induced an MK-801-sensitive increase in rCBF in anesthetized WKY rats, which was inhibited by MP pretreatments. This inhibition was prevented by pretreatment with chelerythrine (a PKC inhibitor). The NMDA-induced increase in rCBF was also inhibited by the PKC activator in a concentration-dependent manner. Neither MP nor MK-801 affected the increase in rCBF induced by the topical application of acetylcholine or sodium nitroprusside. Topical application of MP to the parietal cortex of SHRs, on the other hand, increased basal rCBF slightly but significantly. MP enhanced the NMDA-induced increase in rCBF in SHRs and RHRs. These results suggested that MP had a dual effect on the modulation of rCBF. MP appears to play a significant physiological role in CBF regulation.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/physiology
  8. Ip YK, Leong MW, Sim MY, Goh GS, Wong WP, Chew SF
    J Exp Biol, 2005 May;208(Pt 10):1993-2004.
    PMID: 15879078
    The objective of this study was to elucidate if chronic and acute ammonia intoxication in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti, were associated with high levels of ammonia and/or glutamine in their brains, and if acute ammonia intoxication could be prevented by the administration of methionine sulfoximine [MSO; an inhibitor of glutamine synthetase (GS)] or MK801 [an antagonist of N-methyl D-aspartate type glutamate (NMDA) receptors]. For P. schlosseri and B. boddaerti exposed to sublethal concentrations (100 and 8 mmol l(-1) NH4Cl, respectively, at pH 7.0) of environmental ammonia for 4 days, brain ammonia contents increased drastically during the first 24 h, and they reached 18 and 14.5 micromol g(-1), respectively, at hour 96. Simultaneously, there were increases in brain glutamine contents, but brain glutamate contents were unchanged. Because glutamine accumulated to exceptionally high levels in brains of P. schlosseri (29.8 micromol g(-1)) and B. boddaerti (12.1 micromol g(-1)) without causing death, it can be concluded that these two mudskippers could ameliorate those problems associated with glutamine synthesis and accumulation as observed in patients suffering from hyperammonemia. P. schlosseri and B. boddaerti could tolerate high doses of ammonium acetate (CH3COONH4) injected into their peritoneal cavities, with 24 h LC50 of 15.6 and 12.3 micromol g(-1) fish, respectively. After the injection with a sublethal dose of CH3COONH4 (8 micromol g(-1) fish), there were significant increases in ammonia (5.11 and 8.36 micromol g(-1), respectively) and glutamine (4.22 and 3.54 micromol g(-1), respectively) levels in their brains at hour 0.5, but these levels returned to normal at hour 24. By contrast, for P. schlosseri and B. boddaerti that succumbed within 15-50 min to a dose of CH3COONH4 (15 and 12 micromol g(-1) fish, respectively) close to the LC50 values, the ammonia contents in the brains reached much higher levels (12.8 and 14.9 micromol g(-1), respectively), while the glutamine level remained relatively low (3.93 and 2.67 micromol g(-1), respectively). Thus, glutamine synthesis and accumulation in the brain was not the major cause of death in these two mudskippers confronted with acute ammonia toxicity. Indeed, MSO, at a dosage (100 microg g(-1) fish) protective for rats, did not protect B. boddaerti against acute ammonia toxicity, although it was an inhibitor of GS activities from the brains of both mudskippers. In the case of P. schlosseri, MSO only prolonged the time to death but did not reduce the mortality rate (100%). In addition, MK801 (2 microg g(-1) fish) had no protective effect on P. schlosseri and B. boddaerti injected with a lethal dose of CH3COONH4, indicating that activation of NMDA receptors was not the major cause of death during acute ammonia intoxication. Thus, it can be concluded that there are major differences in mechanisms of chronic and acute ammonia toxicity between brains of these two mudskippers and mammalian brains.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
  9. Ismail CAN, Suppian R, Ab Aziz CB, Long I
    J Mol Neurosci, 2021 Feb;71(2):379-393.
    PMID: 32671697 DOI: 10.1007/s12031-020-01661-1
    The pharmacological inhibition of glial activation is one of the new approaches for combating neuropathic pain in which the role of glia in the modulation of neuropathic pain has attracted significant interest and attention. Neuron-glial crosstalk is achieved with N-methyl-D-aspartate-2B receptor (NMDAR-2B) activation. This study aims to determine the effect of ifenprodil, a potent noncompetitive NMDAR-2B antagonist, on activated microglia, brain-derived neurotrophic factors (BDNF) and downstream regulatory element antagonist modulator (DREAM) protein expression in the spinal cord of streptozotocin-induced painful diabetic neuropathy (PDN) rats following formalin injection. In this experimentation, 48 Sprague-Dawley male rats were randomly selected and divided into four groups: (n = 12): control, PDN, and ifenprodil-treated PDN rats at 0.5 μg or 1.0 μg for 7 days. Type I diabetes mellitus was then induced by injecting streptozotocin (60 mg/kg, i.p.) into the rats which were then over a 2-week period allowed to progress into the early phase of PDN. Ifenprodil was administered in PDN rats while saline was administered intrathecally in the control group. A formalin test was conducted during the fourth week to induce inflammatory nerve injury, in which the rats were sacrificed at 72 h post-formalin injection. The lumbar enlargement region (L4-L5) of the spinal cord was dissected for immunohistochemistry and western blot analyses. The results demonstrated a significant increase in formalin-induced flinching and licking behavior with an increased spinal expression of activated microglia, BDNF and DREAM proteins. It was also shown that the ifenprodil-treated rats following both doses reduced the extent of their flinching and duration of licking in PDN in a dose-dependent manner. As such, ifenprodil successfully demonstrated inhibition against microglia activation and suppressed the expression of BDNF and DREAM proteins in the spinal cord of PDN rats. In conclusion, ifenprodil may alleviate PDN by suppressing spinal microglia activation, BDNF and DREAM proteins.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
  10. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I
    Diabetes Metab J, 2019 Apr;43(2):222-235.
    PMID: 30604591 DOI: 10.4093/dmj.2018.0020
    BACKGROUND: This study investigated the role of NR2B in a modulated pain process in the painful diabetic neuropathy (PDN) rat using various pain stimuli.

    METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.

    RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.

    CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.

    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/metabolism*
  11. Kaka U, Saifullah B, Abubakar AA, Goh YM, Fakurazi S, Kaka A, et al.
    BMC Vet Res, 2016 Sep 9;12(1):198.
    PMID: 27612660
    Central sensitization is a potential severe consequence of invasive surgical procedures. It results in postoperative and potentially chronic pain enhancement. It results in postoperative pain enhancement; clinically manifested as hyperalgesia and allodynia. N-methyl-D-aspartate (NMDA) receptor plays a crucial role in the mechanism of central sensitisation. Ketamine is most commonly used NMDA-antagonist in human and veterinary practice. However, the antinociceptive serum concentration of ketamine is not yet properly established in dogs. Six dogs were used in a crossover design, with one week washout period. Treatments consisted of: 1) 0.5 mg/kg ketamine followed by continuous rate infusion (CRI) of 30 μg/kg/min; 2) 0.5 mg/kg ketamine followed by CRI of 30 μg/kg/min and lidocaine (2 mg/kg followed by CRI of 100 μg/kg/min); and 3) 0.5 mg/kg ketamine followed by CRI of 50 μg/kg/min. The infusion was administered up to 120 min. Nociceptive thresholds and ketamine serum concentrations were measured before drug administration, and at 5, 10, 20, 40, 60, 90, 120, 140 and 160 min after the start of infusion.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  12. Lah MHC, Reza F, Begum T, Abdullah JM
    Malays J Med Sci, 2018 May;25(3):27-39.
    PMID: 30899185 MyJurnal DOI: 10.21315/mjms2018.25.3.4
    Background: Previous studies from animal models have shown that pre-synaptic NMDA receptors (preNMDARs) are present in the cortex, but the role of inhibition mediated by preNMDARs during epileptogenesis remains unclear. In this study, we wanted to observe the changes in GABAergic inhibition through preNMDARs in sensory-motor and visual cortical pyramidal neurons after pilocarpine-induced status epilepticus.

    Methods: Using a pilocarpine-induced epileptic mouse model, sensory-motor and visual cortical slices were prepared, and the whole-cell patch clamp technique was used to record spontaneous inhibitory post-synaptic currents (sIPSCs).

    Results: The primary finding was that the mean amplitude of sIPSC from the sensory-motor cortex increased significantly in epileptic mice when the recording pipette contained MK-801 compared to control mice, whereas the mean sIPSC frequency was not significantly different, indicating that post-synaptic mechanisms are involved. However, there was no significant pre-synaptic inhibition through preNMDARs in the acute brain slices from pilocarpine-induced epileptic mice.

    Conclusion: In the acute case of epilepsy, a compensatory mechanism of post-synaptic inhibition, possibly from ambient GABA, was observed through changes in the amplitude without significant changes in the frequency of sIPSC compared to control mice. The role of preNMDAR-mediated inhibition in epileptogenesis during the chronic condition or in the juvenile stage warrants further investigation.

    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  13. Lee, CL, Zainuddin AA, Abdul Karim AK, Yulianty A, Law, ZK, Md.Isa N, et al.
    MyJurnal
    We report a rare case of altered mental status in a young patient with immature ovarian teratoma. A 22-year-old woman presented with seizures, hallucination, amnesia and orofacial dyskinesia. Examination and investigation revealed an ovarian massand asalphing-oophorectomy was performed. The histopathological examination result showed an immature teratoma grade 2 with thepresence of immature primitive glial tissue. Her CSF N-Methyl-D-Aspartic acid receptor (Anti-NMDAR) antibodytest was positive. N-Methyl-D-Aspartic acid receptor antibody associated limbic encephalitis is an autoimmune antibody-mediated neuropsychiatric disorder. Resection of the tumour and immunotherapy resulted in full recovery.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  14. Mohd Zain Z, Ab Ghani S, O'Neill RD
    Amino Acids, 2012 Nov;43(5):1887-94.
    PMID: 22865247 DOI: 10.1007/s00726-012-1365-0
    This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring D-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were D-amino acid oxidase for D-serine sensitivity (linear region slope, 61 ± 7 μA cm(-2) mM(-1); limit of detection, 20 nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1 s, ideal for 'real-time' monitoring, and detection of systemically administered D-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of D-serine in excitotoxicity, and modulation of N-methyl-D-aspartate receptor function by D-serine and glycine in the central nervous system.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/metabolism
  15. Pui Ping C, Akhtar MN, Israf DA, Perimal EK, Sulaiman MR
    Molecules, 2020 Nov 18;25(22).
    PMID: 33217904 DOI: 10.3390/molecules25225385
    The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9-4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  16. Rajahram GS, Nadarajah R, Lim KS, Menon J
    Med J Malaysia, 2015 Dec;70(6):363-4.
    PMID: 26988212 MyJurnal
    Anti-N-Methyl-D-Aspartate receptor (NMDAR) encephalitis is an immune mediated condition with characteristic clinical presentation. We report the first case from Borneo, Sabah and the use of electroconvulsive therapy (ECT) in treating recalcitrant psychiatrist symptoms associated with this condition.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate
  17. Rosini M, Simoni E, Caporaso R, Basagni F, Catanzaro M, Abu IF, et al.
    Eur J Med Chem, 2019 Oct 15;180:111-120.
    PMID: 31301562 DOI: 10.1016/j.ejmech.2019.07.011
    N-methyl-d-aspartate receptors (NMDAR) are critically involved in the pathogenesis of Alzheimer's disease (AD). Acting as an open-channel blocker, the anti-AD drug memantine preferentially targets NMDAR overactivation, which has been proposed to trigger neurotoxic events mediated by amyloid β peptide (Aβ) and oxidative stress. In this study, we applied a multifunctional approach by conjugating memantine to ferulic acid, which is known to protect the brain from Aβ neurotoxicity and neuronal death caused by ROS. The most interesting compound (7) behaved, like memantine, as a voltage-dependent antagonist of NMDAR (IC50 = 6.9 μM). In addition, at 10 μM concentration, 7 exerted antioxidant properties both directly and indirectly through the activation of the Nrf-2 pathway in SH-SY5Y cells. At the same concentration, differently from the parent compounds memantine and ferulic acid alone, it was able to modulate Aβ production, as revealed by the observed increase of the non-amyloidogenic sAPPα in H4-SW cells. These findings suggest that compound 7 may represent a promising tool for investigating NMDAR-mediated neurotoxic events involving Aβ burden and oxidative damage.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*; Receptors, N-Methyl-D-Aspartate/metabolism
  18. Rothan HA, Amini E, Faraj FL, Golpich M, Teoh TC, Gholami K, et al.
    Sci Rep, 2017 03 30;7:45540.
    PMID: 28358047 DOI: 10.1038/srep45540
    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*; Receptors, N-Methyl-D-Aspartate/metabolism
  19. Shiromwar SS, Chidrawar VR, Singh S, Chitme HR, Maheshwari R, Sultana S
    J Mol Neurosci, 2024 Jan 19;74(1):13.
    PMID: 38240858 DOI: 10.1007/s12031-023-02178-z
    Hypothalamus is central to food intake and satiety. Recent data unveiled the expression of N-methyl-D-aspartate receptors (NMDAR) on hypothalamic neurons and their interaction with GABAA and serotoninergic neuronal circuits. However, the precise mechanisms governing energy homeostasis remain elusive. Notably, in females, the consumption of progesterone-containing preparations, such as hormonal replacement therapy and birth control pills, has been associated with hyperphagia and obesity-effects mediated through the hypothalamus. To elucidate this phenomenon, we employed the progesterone-induced obesity model in female Swiss albino mice. Four NMDAR modulators were selected viz. dextromethorphan (Dxt), minocycline, d-aspartate, and cycloserine. Obesity was induced in female mice by progesterone administration for 4 weeks. Mice were allocated into 7 groups, group-1 as vehicle control (arachis oil), group-2 (progesterone + arachis oil), and group-3 as positive-control (progesterone + sibutramine); other groups were treated with test drugs + progesterone. Various parameters were recorded like food intake, thermogenesis, serum lipids, insulin, AST and ALT levels, organ-to-body weight ratio, total body fat, adiposity index, brain serotonin levels, histology of liver, kidney, and sizing of fat cells. Dxt-treated group has shown a significant downturn in body weight (p 
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/metabolism
  20. Tsuchida N, Hamada K, Shiina M, Kato M, Kobayashi Y, Tohyama J, et al.
    Clin Genet, 2018 12;94(6):538-547.
    PMID: 30280376 DOI: 10.1111/cge.13454
    N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors.
    Matched MeSH terms: Receptors, N-Methyl-D-Aspartate/genetics*; Receptors, N-Methyl-D-Aspartate/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links