Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Camacho F, Moreno E, Garcia-Alles LF, Chinea Santiago G, Gilleron M, Vasquez A, et al.
    Front Immunol, 2020;11:566710.
    PMID: 33162982 DOI: 10.3389/fimmu.2020.566710
    Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.
    Matched MeSH terms: Recombinant Proteins/immunology
  2. Su YC, Wan KL, Mohamed R, Nathan S
    Microbes Infect., 2008 Oct;10(12-13):1335-45.
    PMID: 18761419 DOI: 10.1016/j.micinf.2008.07.034
    Burkholderia pseudomallei is the etiological agent of melioidosis, a severe infectious disease of humans and animals. The role of the bacterium's proteins expressed in vivo during human melioidosis continues to remain an enigma. This study's aim was to identify B. pseudomallei target proteins that elicit the humoral immune response in infected humans. A small insert genomic expression library was constructed and immunoscreened to identify peptides that reacted exclusively with melioidosis patients' sera. Sero-positive clones expressing immunogenic peptides were sequenced and annotated, and shown to represent 109 proteins involved in bacterial cell envelope biogenesis, cell motility and secretion, transcription, amino acid, ion and protein metabolism, energy production, DNA repair and unknown hypothetical proteins. Western blot analysis of three randomly selected full-length immunogenic polypeptides with patients' sera verified the findings of the immunome screening. The patients' humoral immune response to the 109 proteins suggests the induction or significant upregulation of these proteins in vivo during human infection and thus may play a role in the pathogenesis of B. pseudomallei. Identification of B. pseudomallei immunogens has shed new light on the elucidation of the bacterium's pathogenesis mechanism and disease severity. These immunogens can be further evaluated as prophylactic and serodiagnostic candidates as well as drug targets.
    Matched MeSH terms: Recombinant Proteins/immunology
  3. Mathew A, Cheng HM, Sam CK, Joab I, Prasad U, Cochet C
    Cancer Immunol Immunother, 1994 Jan;38(1):68-70.
    PMID: 8299121
    The BamHI Z EBV replication activator (ZEBRA) protein is involved in the switch from latency to productive cycle of Epstein-Barr virus. A recombinant ZEBRA protein was synthesized and assessed in enzyme-linked immunosorbent assay (ELISA) for serum IgG response in nasopharyngeal carcinoma (NPC) patients. In 100 NPC serum samples that were positive for IgA to the EBV viral capsid antigen (VCA), 75% had IgG anti-ZEBRA antibodies. In contrast, only 3/83 (3.6%) serum samples from healthy donors and 2/50 (4%) from other cancers were positive for IgG to ZEBRA. Interestingly, in a selected group of 100 NPC sera negative for IgA to VCA, 25% contained IgG anti-ZEBRA antibodies. This suggests that the ELISA for IgG anti-ZEBRA may also identify earlier cases of NPC not detected by the conventional immunofluorescence test for IgA to VCA.
    Matched MeSH terms: Recombinant Proteins/immunology
  4. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

    Matched MeSH terms: Recombinant Proteins/immunology
  5. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    BMC Infect Dis, 2017 12 29;17(1):807.
    PMID: 29284420 DOI: 10.1186/s12879-017-2920-9
    BACKGROUND: The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated.

    METHODS: An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis.

    RESULTS: The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody.

    CONCLUSIONS: This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.

    Matched MeSH terms: Recombinant Proteins/immunology
  6. Kuo IC, Cheong N, Trakultivakorn M, Lee BW, Chua KY
    J Allergy Clin Immunol, 2003 Mar;111(3):603-9.
    PMID: 12642844
    BACKGROUND: Dual sensitization by Blomia tropicalis and Dermatophagoides pteronyssinus mites is common in tropical and subtropical countries. The human IgE cross-reactivity between clinical important group 5 allergens, Blo t 5 and Der p 5, remains controversial.

    OBJECTIVE: This study was undertaken to assess the levels of the IgE cross-reactivity between Blo t 5 and Der p 5 by using sera from a large cohort of asthmatic children in subtropical and tropical countries.

    METHODS: Purified recombinant Blo t 5 and Der p 5 were produced in Pichia pastoris and tested against sera from 195 asthmatic children. The IgE cross-reactivity was examined by direct, inhibitory and competitive human IgE enzyme-linked immunosorbent assay as well as skin prick tests.

    RESULTS: The Blo t 5 IgE responses were 91.8% (134 of 146) and 73.5% (36 of 49) for Taiwanese and Malaysian sera, respectively. The Blo t 5 specific IgE titers were significantly higher than those of Der p 5 (P

    Matched MeSH terms: Recombinant Proteins/immunology
  7. Lim BH, Noordin R, Nor ZM, Rahman RA, Abdullah KA, Sinnadurai S
    Exp Parasitol, 2004 Sep-Oct;108(1-2):1-6.
    PMID: 15491542
    BmR1 recombinant antigen has previously been shown to demonstrate high sensitivity and specificity in the serological diagnosis of brugian filariasis in humans. In this study, the pattern of recognition of antibody to BmR1 during Brugia malayi infection was investigated by employing Meriones unguiculatus as the experimental model. Thirty two gerbils were infected subcutaneously with 120 L(3); and two control groups each comprising 25 animals were employed. ELISA using BmR1 was used to detect filaria-specific IgG antibodies elicited by the gerbils; using sera collected from the day 1 until day 150 post-inoculation (p.i.). The results showed that BmR1 detected B. malayi infection in gerbils harboring adult worms irrespective of the presence of circulating microfilaria, and was exemplified by positive ELISA results in nine a microfilaraemic animals that harbored live adult worms. The initial time of the antibody recognition was at day 8 p.i. and the antibody titre showed some correlation with adult worm burden.
    Matched MeSH terms: Recombinant Proteins/immunology
  8. Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T, et al.
    J Thromb Haemost, 2015 Nov;13(11):1989-98.
    PMID: 26362483 DOI: 10.1111/jth.13141
    BACKGROUND: Vatreptacog alfa, a recombinant human factor VIIa (rFVIIa) analog developed to improve the treatment of bleeds in hemophilia patients with inhibitors, differs from native FVIIa by three amino acid substitutions. In a randomized, double-blind, crossover, confirmatory phase III trial (adept(™) 2), 8/72 (11%) hemophilia A or B patients with inhibitors treated for acute bleeds developed anti-drug antibodies (ADAs) to vatreptacog alfa.

    OBJECTIVES: To characterize the formation of anti-vatreptacog alfa ADAs in hemophilia patients with inhibitors.

    METHODS/PATIENTS: This was a post hoc analysis of adept(™) 2. Immunoglobulin isotype determination, specificity analysis of rFVIIa cross-reactive antibodies, epitope mapping of rFVIIa single mutant analogs and pharmacokinetic (PK) profiling were performed to characterize the ADAs.

    RESULTS: Immunoglobulin isotyping indicated that the ADAs were of the immunoglobulin G subtype. In epitope mapping, none of the rFVIIa single mutant analogs (V158D, E296V or M298Q) contained the complete antibody epitope, confirming that the antibodies were specific for vatreptacog alfa. In two patients, for whom PK profiling was performed both before and after the development of ADAs, vatreptacog alfa showed a prolonged elimination phase following ADA development. During the follow-up evaluation, the rFVIIa cross-reactivity disappeared after the last vatreptacog alfa exposure, despite continued exposure to rFVIIa as part of standard care.

    CONCLUSIONS: Results from the vatreptacog alfa phase III trial demonstrate that the specific changes made, albeit relatively small, to the FVIIa molecule alter its clinical immunogenicity.

    Matched MeSH terms: Recombinant Proteins/immunology
  9. Huang CH, Liew LM, Mah KW, Kuo IC, Lee BW, Chua KY
    Clin Exp Allergy, 2006 Mar;36(3):369-76.
    PMID: 16499649
    Sensitization to mite and cockroach allergens is common, and diagnosis and therapy of allergy can be further complicated by the presence of allergen isoforms and panallergens. Purified recombinant and native allergens are useful for studies to resolve such problems.
    Matched MeSH terms: Recombinant Proteins/immunology
  10. Fong MY, Lau YL, Zulqarnain M
    Biotechnol Lett, 2008 Apr;30(4):611-8.
    PMID: 18043869
    The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.
    Matched MeSH terms: Recombinant Proteins/immunology
  11. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
    Matched MeSH terms: Recombinant Proteins/immunology
  12. Hoe LN, Wan KL, Nathan S
    Parasitology, 2005 Dec;131(Pt 6):759-68.
    PMID: 16336729
    The protozoan parasite Toxoplasma gondii produces a family of microneme proteins that are thought to play diverse roles in aiding the parasite's intracellular existence. Among these, TgMIC2 has a putative function in parasite adhesion to the host cell to initiate the invasion process. The invasion process may be localized and inhibited by monoclonal antibodies against the protein(s) involved. Here we report on the construction of a phage-displayed single-chain variable fragment (scFv) library from mice immunized with whole T. gondii parasites. The library was subsequently panned against recombinant TgMIC2 (rpTgMIC2) and 2 different groups of antibody clones were obtained, based on fingerprinting and sequencing data. The expressed recombinant scFv antibody was able to recognize rpTgMIC2 in a Western blot detection experiment. These results show that the phage display technology allows quick and effective production of monoclonal antibodies against parasite antigens. By panning the scFv-displayed library, we should be able to obtain a plethora of multi-functional scFv antibodies towards T. gondii proteins.
    Matched MeSH terms: Recombinant Proteins/immunology
  13. Nakamura C, Liu MM, Goo YK, Zhang GH, Jia HL, Kumagai A, et al.
    Trop Biomed, 2020 Dec 01;37(4):1029-1037.
    PMID: 33612755 DOI: 10.47665/tb.37.4.1029
    Previously, we have identified a gene encoding thrombospondin-related anonymous protein of Babesia gibsoni (BgTRAP), and have shown that the antisera raised against recombinant BgTRAP expressed in Escherichia coli inhibited the growth of parasites. In the present study, a recombinant vaccinia virus expressing the BgTRAP (VV/BgTRAP) was constructed. A specific band with a molecular mass of 80 kDa, which is similar to that of native BgTRAP on the merozoites of B. gibsoni, was detected in the supernatant of VV/ BgTRAP-infected RK13 cells. Mice inoculated with VV/BgTRAP produced a specific antiBgTRAP response. The antiserum against VV/BgTRAP showed reactivity against the native BgTRAP on parasites. These results indicated that the recombinant vaccinia virus expressing BgTRAP might be a vaccine candidate against canine B. gibsoni infection.
    Matched MeSH terms: Recombinant Proteins/immunology
  14. Yeo AS, Rathakrishnan A, Wang SM, Ponnampalavanar S, Manikam R, Sathar J, et al.
    Biomed Res Int, 2015;2015:420867.
    PMID: 25815314 DOI: 10.1155/2015/420867
    Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
    Matched MeSH terms: Recombinant Proteins/immunology
  15. Kurup VP, Yeang HY, Sussman GL, Bansal NK, Beezhold DH, Kelly KJ, et al.
    Clin Exp Allergy, 2000 Mar;30(3):359-69.
    PMID: 10691894
    BACKGROUND: Latex allergy is largely an occupational allergy due to sensitization to natural rubber latex allergens present in a number of health care and household products. Although several purified allergens are currently available for study, information on the usefulness of these purified, native or recombinant allergens in the demonstration of specific immunoglobulin (Ig) E in the sera of patients is lacking.

    OBJECTIVE: To evaluate the purified latex allergens and to demonstrate specific IgE antibody in the sera of health care workers and spina bifida patients with clinical latex allergy.

    METHODS: Two radioallergosorbent and an enzyme-linked immunosorbent assay (ELISA) using latex proteins Hev b 1, 2, 3, 4, 6 and 7 along with two glove extracts and Malaysian nonammoniated latex (MNA) were evaluated to demonstrate IgE in the sera of health care workers and spina bifida with latex allergy and controls with no history of latex allergy.

    RESULTS: ELISA using the purified latex allergens demonstrated specific IgE in 32-65% health care workers and 54-100% of spina bifida patients with latex allergy. The corresponding figures for RAST were 13-48 and 23-85 for RAST-1 and 19-61 and 36-57 for RAST-2. These results were comparable with the results obtained with glove extracts and crude rubber latex proteins.

    CONCLUSIONS: When used simultaneously, latex proteins Hev b 2 and Hev b 7 reacted significantly with specific serum IgE in 80% of health care workers and 92% of spina bifida patients with latex allergy by ELISA technique, while this combination gave lower positivity when the RASTs were used. By the addition of Hev b 3, specific IgE was detected in all spina bifida patients with latex allergy. Both RASTs failed to show specific IgE in the control subjects, while the ELISA showed significant latex-specific IgE in 22% of controls.

    Matched MeSH terms: Recombinant Proteins/immunology
  16. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Biosci Bioeng, 2012 Jan;113(1):26-9.
    PMID: 22024533 DOI: 10.1016/j.jbiosc.2011.09.007
    The C-terminal domain of Nipah virus (NiV) nucleocapsid protein (NP₄₀₁₋₅₃₂) was inserted at the N-terminus and the immunodominant loop of hepatitis B core antigen (HBc). The stability of NP₄₀₁₋₅₃₂ increased tremendously when displayed on the HBc particles. These particles reacted specifically with the swine anti-NiV and the human anti-HBc antisera.
    Matched MeSH terms: Recombinant Proteins/immunology
  17. Jambari NN, Liddell S, Martinez-Pomares L, Alcocer MJC
    PLoS One, 2021;16(4):e0249876.
    PMID: 33914740 DOI: 10.1371/journal.pone.0249876
    Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
    Matched MeSH terms: Recombinant Proteins/immunology
  18. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 Jan;32(1):161-9.
    PMID: 22119573 DOI: 10.1016/j.fsi.2011.11.006
    Caspase 3c (MrCasp3c) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrCasp3c consisted of 2080 bp nucleotide encoded 521 polypeptide with an estimated molecular mass of 59 kDa. MrCasp3c sequence contains caspase family p20 domain profile and caspase family p10 domain profile at 236-367 and 378-468 respectively. The quantitative real time PCR analysis revealed a broad expression of MrCasp3c with the highest expression in haemocyte and the lowest in stomach. The expression of MrCasp3c after challenge with the infectious hypodermal and haematopoietic necrosis virus (IHHNV) was tested in haemocyte. In addition, MrCasp3c was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The enzyme activity of MrCasp3c was also found to be up-regulated by IHHNV in haemocyte and hepatopancreas tissues. This study suggested that MrCasp3c may be an effector caspase associated with the induction of apoptosis which is potentially involved in the immune defence of M. rosenbergii.
    Matched MeSH terms: Recombinant Proteins/immunology
  19. Omar AR, Kim CL, Bejo MH, Ideris A
    J Vet Sci, 2006 Sep;7(3):241-7.
    PMID: 16871018
    The ability of a heat-inactivated whole virus from a highly virulent infectious bursal disease virus (hvIBDV) and VP2 protein from hvIBDV expressed in E. coli provided protection against a hvIBDV challenge in specificpathogen-free (SPF) chickens. Six out of seven chickens that were injected three times with crude VP2 protein developed significant antibody titer against IBDV. However, only four out of the seven chickens survived the hvIBDV challenge. Despite showing low antibody titer profiles, all chickens immunized with the heat-inactivated whole virus also survived the challenged with hvIBDV. However, all of these chickens had bursal atrophy and mild to moderate depletion of lymphocytes. Thus, antibodies raised against IBDV VP2 protein expressed in E. coli and denatured IBDV proteins induced some degree of protection against mortality but not against bursal damage following challenge with hvIBDV.
    Matched MeSH terms: Recombinant Proteins/immunology*
  20. Nyon MP, Du L, Tseng CK, Seid CA, Pollet J, Naceanceno KS, et al.
    Vaccine, 2018 03 27;36(14):1853-1862.
    PMID: 29496347 DOI: 10.1016/j.vaccine.2018.02.065
    Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 2040 patients and caused 712 deaths since its first appearance in 2012, yet neither pathogen-specific therapeutics nor approved vaccines are available. To address this need, we are developing a subunit recombinant protein vaccine comprising residues 377-588 of the MERS-CoV spike protein receptor-binding domain (RBD), which, when formulated with the AddaVax adjuvant, it induces a significant neutralizing antibody response and protection against MERS-CoV challenge in vaccinated animals. To prepare for the manufacture and first-in-human testing of the vaccine, we have developed a process to stably produce the recombinant MERS S377-588 protein in Chinese hamster ovary (CHO) cells. To accomplish this, we transfected an adherent dihydrofolate reductase-deficient CHO cell line (adCHO) with a plasmid encoding S377-588 fused with the human IgG Fc fragment (S377-588-Fc). We then demonstrated the interleukin-2 signal peptide-directed secretion of the recombinant protein into extracellular milieu. Using a gradually increasing methotrexate (MTX) concentration to 5 μM, we increased protein yield by a factor of 40. The adCHO-expressed S377-588-Fc recombinant protein demonstrated functionality and binding specificity identical to those of the protein from transiently transfected HEK293T cells. In addition, hCD26/dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with AddaVax-adjuvanted S377-588-Fc could produce neutralizing antibodies against MERS-CoV and survived for at least 21 days after challenge with live MERS-CoV with no evidence of immunological toxicity or eosinophilic immune enhancement. To prepare for large scale-manufacture of the vaccine antigen, we have further developed a high-yield monoclonal suspension CHO cell line.
    Matched MeSH terms: Recombinant Proteins/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links