Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Jambari NN, Liddell S, Martinez-Pomares L, Alcocer MJC
    PLoS One, 2021;16(4):e0249876.
    PMID: 33914740 DOI: 10.1371/journal.pone.0249876
    Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  2. Rahman RN, Salleh AB, Basri M, Wong CF
    Int J Mol Sci, 2011;12(9):5797-814.
    PMID: 22016627 DOI: 10.3390/ijms12095797
    Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3) was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  3. Levitskiy SA, Sycheva AM, Kharlampieva DD, Oberto J, Kamashev DE, Serebryakova MV, et al.
    Biochimie, 2011 Jul;93(7):1102-9.
    PMID: 21443922 DOI: 10.1016/j.biochi.2011.03.005
    HU is a most abundant DNA-binding protein in bacteria. This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts, and in some viruses. HU protein non-specifically binds and bends DNA as a hetero- or homodimer and can participate in DNA supercoiling and DNA condensation. It also takes part in some DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows some specificity to cruciform DNA and to repair intermediates, e.g., nick, gap, bulge, 3'-overhang, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU proteins purification procedure is required. Here we report overproduction and purification of the HU homodimers. The method of HU purification allows obtaining a pure recombinant non-tagged protein cloned in Escherichia coli. We applied this method for purification of Acholeplasma laidlawii HU and demonstrated that this protein possesses a DNA-binding activity and is free of contaminating nuclease activity. Besides that we have shown that expression of A. laidlawii ihf_hu gene in a slow-growing hupAB E. coli strain restores the wild-type growth indicating that aclHU can perform the basic functions of E. coli HU in vivo.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  4. Ebrahimpour A, Rahman RN, Basri M, Salleh AB
    Bioresour Technol, 2011 Jul;102(13):6972-81.
    PMID: 21531550 DOI: 10.1016/j.biortech.2011.03.083
    The mature ARM lipase gene was cloned into the pTrcHis expression vector and over-expressed in Escherichia coli TOP10 host. The optimum lipase expression was obtained after 18 h post induction incubation with 1.0mM IPTG, where the lipase activity was approximately 1623-fold higher than wild type. A rapid, high efficient, one-step purification of the His-tagged recombinant lipase was achieved using immobilized metal affinity chromatography with 63.2% recovery and purification factor of 14.6. The purified lipase was characterized as a high active (7092 U mg(-1)), serine-hydrolase, thermostable, organic solvent tolerant, 1,3-specific lipase with a molecular weight of about 44 kDa. The enzyme was a monomer with disulfide bond(s) in its structure, but was not a metalloenzyme. ARM lipase was active in a broad range of temperature and pH with optimum lipolytic activity at pH 8.0 and 65°C. The enzyme retained 50% residual activity at pH 6.0-7.0, 50°C for more than 150 min.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  5. Yeap WC, Ooi TE, Namasivayam P, Kulaveerasingam H, Ho CL
    Plant Cell Rep, 2012 Oct;31(10):1829-43.
    PMID: 22699852 DOI: 10.1007/s00299-012-1297-x
    RNA-binding proteins (RBPs) have been implicated as regulatory proteins involved in the post-transcriptional processes of gene expression in plants under various stress conditions. In this study, we report the cloning and characterization of a gene, designated as EgRBP42, encoding a member of the plant heterogeneous nuclear ribonucleoprotein (hnRNP)-like RBP family from oil palm (Elaeis guineensis Jacq.). EgRBP42 consists of two N-terminal RNA recognition motifs and a glycine-rich domain at the C-terminus. The upstream region of EgRBP42 has multiple light-responsive, stress-responsive regulatory elements and regulatory elements associated with flower development. Real-time RT-PCR analysis of EgRBP42 showed that EgRBP42 was expressed in oil palm tissues tested, including leaf, shoot apical meristem, root, female inflorescence, male inflorescence and mesocarp with the lowest transcript level in the roots. EgRBP42 protein interacted with transcripts associated with transcription, translation and stress responses using pull-down assay and electrophoretic mobility shift assay. The accumulation of EgRBP42 and its interacting transcripts were induced by abiotic stresses, including salinity, drought, submergence, cold and heat stresses in leaf discs. Collectively, the data suggested that EgRBP42 is a RBP, which responds to various abiotic stresses and could be advantageous for oil palm under stress conditions. Key message EgRBP42 may be involved in the post-transcriptional regulation of stress-related genes important for plant stress response and adaptation.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  6. Jaafar NR, Khoiri NM, Ismail NF, Mahmood NAN, Abdul Murad AM, Abu Bakar FD, et al.
    Enzyme Microb Technol, 2020 Oct;140:109625.
    PMID: 32912685 DOI: 10.1016/j.enzmictec.2020.109625
    Endo-β-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1 (Blg32) composed of 284 amino acids with a predicted molecular mass of 31.6 kDa is expressed in Escherichia coli and purified to homogeneity. Herein, Blg32 characteristics, substrates and product specificity as well as structural traits that might be involved in the production of sugar molecules are analysed. This enzyme functions optimally at the temperature of 70 °C, pH value of 8.0 with its catalytic activity strongly enhanced by Mn2+. Remarkably, the purified enzyme is highly stable in high temperature and alkaline conditions. It exhibits the highest activity on laminarin (376.73 U/mg) followed by curdlan and yeast β-glucan. Blg32 activity increased by 62% towards soluble substrate (laminarin) compared to insoluble substrate (curdlan). Hydrolytic products of laminarin were oligosaccharides with degree of polymerisation (DP) of 1 to 5 with the main product being laminaritriose (DP3). This suggests that the active site of Blg32 could recognise up to five glucose units. High concentration of Blg32 mainly produces glucose whilst low concentration of Blg32 yields oligosaccharides with different DP (predominantly DP3). A theoretical structural model of Blg32 was constructed and structural analysis revealed that Trp156 is involved in multiple hydrophobic stacking interactions. The amino acid was predicted to participate in substrate recognition and binding. It was also exhibited that catalytic groove of Blg32 has a narrow angle, thus limiting the substrate binding reaction. All these properties and knowledge of the subsites are suggested to be related to the possible mode of action of how Blg32 produces glucooligosaccharides.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  7. Ganasen M, Yaacob N, Rahman RN, Leow AT, Basri M, Salleh AB, et al.
    Int J Biol Macromol, 2016 Nov;92:1266-1276.
    PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095
    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  8. Fischer K, Diederich S, Smith G, Reiche S, Pinho Dos Reis V, Stroh E, et al.
    PLoS One, 2018;13(4):e0194385.
    PMID: 29708971 DOI: 10.1371/journal.pone.0194385
    Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  9. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, et al.
    Hum Vaccin Immunother, 2017 Feb;13(2):306-313.
    PMID: 27929750 DOI: 10.1080/21645515.2017.1264783
    Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
    Matched MeSH terms: Recombinant Proteins/isolation & purification*
  10. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  11. Chew FN, Tan WS, Boo HC, Tey BT
    Prep Biochem Biotechnol, 2012;42(6):535-50.
    PMID: 23030465 DOI: 10.1080/10826068.2012.660903
    An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  12. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 Jan;32(1):161-9.
    PMID: 22119573 DOI: 10.1016/j.fsi.2011.11.006
    Caspase 3c (MrCasp3c) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrCasp3c consisted of 2080 bp nucleotide encoded 521 polypeptide with an estimated molecular mass of 59 kDa. MrCasp3c sequence contains caspase family p20 domain profile and caspase family p10 domain profile at 236-367 and 378-468 respectively. The quantitative real time PCR analysis revealed a broad expression of MrCasp3c with the highest expression in haemocyte and the lowest in stomach. The expression of MrCasp3c after challenge with the infectious hypodermal and haematopoietic necrosis virus (IHHNV) was tested in haemocyte. In addition, MrCasp3c was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The enzyme activity of MrCasp3c was also found to be up-regulated by IHHNV in haemocyte and hepatopancreas tissues. This study suggested that MrCasp3c may be an effector caspase associated with the induction of apoptosis which is potentially involved in the immune defence of M. rosenbergii.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  13. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Chromatogr A, 2010 May 21;1217(21):3473-80.
    PMID: 20388569 DOI: 10.1016/j.chroma.2010.03.012
    Hepatitis B core antigen (HBcAg) is used as a diagnostic reagent for the detection of hepatitis B virus infection. In this study, immobilized metal affinity-expanded bed adsorption chromatography (IMA-EBAC) was employed to purify N-terminally His-tagged HBcAg from unclarified bacterial homogenate. Streamline Chelating was used as the adsorbent and the batch adsorption experiment showed that the optimal binding pH of His-tagged HBcAg was 8.0 with a binding capacity of 1.8 mg per ml of adsorbent. The optimal elution condition for the elution of His-tagged HBcAg from the adsorbent was at pH 7 in the presence of 500 mM imidazole and 1.5 M NaCl. The IMA-EBAC has successfully recovered 56% of His-tagged HBcAg from the unclarified E. coli homogenate with a purification factor of 3.64. Enzyme-linked immunosorbent assay (ELISA) showed that the antigenicity of the recovered His-tagged HBcAg was not affected throughout the IMA-EBAC purification process and electron microscopy revealed that the protein assembled into virus-like particles (VLP).
    Matched MeSH terms: Recombinant Proteins/isolation & purification*
  14. Yeo CC, Tan CL, Gao X, Zhao B, Poh CL
    Res. Microbiol., 2007 Sep;158(7):608-16.
    PMID: 17720458
    Pseudomonas alcaligenes NCIMB 9867 (strain P25X) is known to synthesize two isofunctional gentisate 1,2-dioxygenases (GDO; EC 1.13.11.4) as well as other enzymes involved in the degradation of xylenols and cresols via the gentisate pathway. The hbzE gene encoding what is possibly the strictly inducible gentisate 1,2-dioxygenase II (GDO-II) was cloned, overexpressed and purified as a hexahistidine fusion protein from Escherichia coli. Active recombinant GDO-II had an estimated molecular mass of 150kDa and is likely a tetrameric protein with a subunit mass of approximately 40kDa, similar to the previously characterized gentisate 1,2-dioxygenase I (GDO-I) encoded by xlnE. However, GDO-II was unable to utilize gentisate that is substituted at the carbon-4 position, unlike GDO-I which had broader substrate specificity. GDO-II also possessed different kinetic characteristics when compared to GDO-I. The hbzE-encoded GDO-II shared higher sequence identities (53%) with GDOs from Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2, compared with only 35% identity with the xlnE-encoded GDO-I. The hbzE gene was found to be part of a cluster of nine genes including the putative regulatory gene designated hbzR, which encodes an LysR-type regulator and is divergently transcribed from the other genes of the hbzHIJKLFED cluster.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  15. Yoon KY, Tan WS, Tey BT, Lee KW, Ho KL
    Electrophoresis, 2013 Jan;34(2):244-53.
    PMID: 23161478 DOI: 10.1002/elps.201200257
    Hepatitis B core antigen (HBcAg) expressed in Escherichia coli is able to self-assemble into large and small capsids comprising 240 (triangulation number T = 4) and 180 (triangulation number T = 3) subunits, respectively. Conventionally, sucrose density gradient ultracentrifugation and SEC have been used to separate these capsids. However, good separation of the large and small particles with these methods is never achieved. In the present study, we employed a simple, fast, and cost-effective method to separate the T = 3 and T = 4 HBcAg capsids by using native agarose gel electrophoresis followed by an electroelution method (NAGE-EE). This is a direct, fast, and economic method for isolating the large and small HBcAg particles homogenously based on the hydrodynamic radius of the spherical particles. Dynamic light scattering analysis demonstrated that the T = 3 and T = 4 HBcAg capsids prepared using the NAGE-EE method are monodisperse with polydispersity values of ∼15% and ∼13%, respectively. ELISA proved that the antigenicity of the capsids was not affected in the purification process. Overall, NAGE-EE produced T = 3 and T = 4 capsids with a purity above 90%, and the recovery was 34% and 50%, respectively (total recovery of HBcAg is ∼84%), and the operation time is 15 and 4 times lesser than that of the sucrose density gradient ultracentrifugation and SEC, respectively.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  16. Yap CF, Tan WS, Sieo CC, Tey BT
    Biotechnol Prog, 2013 Mar-Apr;29(2):564-7.
    PMID: 23364925 DOI: 10.1002/btpr.1697
    NP(Δc375) is a truncated version of the nucleocapsid protein of Newcastle disease virus (NDV) which self-assembles into a long helical structure. A packed bed anion exchange chromatography (PB-AEC), SepFastTM Supor Q pre-packed column, was used to purify NP(Δc375) from clarified feedstock. This PB-AEC column adsorbed 76.2% of NP(Δc375) from the clarified feedstock. About 67.5% of the adsorbed NP(Δc375) was successfully eluted from the column by applying 50 mM Tris-HCl elution buffer supplemented with 0.5 M NaCl at pH 7. Thus, a recovery yield of 51.4% with a purity of 76.7% which corresponds to a purification factor of 6.5 was achieved in this PB-AEC operation. Electron microscopic analysis revealed that the helical structure of the NP(Δc375) purified by SepFast(TM) Supor Q pre-packed column was as long as 490 nm and 22-24 nm in diameter. The antigenicity of the purified NP(Δc375) was confirmed by enzyme-linked immunosorbent assay.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  17. Ali MS, Yun CC, Chor AL, Rahman RN, Basri M, Salleh AB
    Protein J, 2012 Mar;31(3):229-37.
    PMID: 22350313 DOI: 10.1007/s10930-012-9395-8
    A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40-60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8-9. Metal ions such as Ca(2+), Mn(2+), Na(+), and K(+) enhanced the lipase activity, but Mg(2+), Zn(2+), and Fe(2+) inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  18. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Ong CE
    Protein J, 2011 Dec;30(8):581-91.
    PMID: 22001938 DOI: 10.1007/s10930-011-9365-6
    This study aimed to express two major drug-metabolizing human hepatic cytochromes P450 (CYPs), CYP2D6 and CYP3A4, together with NADPH-cytochrome P450 oxidoreductase (OxR) in Escherichia coli and to evaluate their catalytic activities. Full length cDNA clones of both isoforms in which the N-terminus was modified to incorporate bovine CYP17α sequence were inserted into a pCWori(+) vector. The modified CYP cDNAs were subsequently expressed individually, each together with OxR by means of separate, compatible plasmids with different antibiotic selection markers. The expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. Enzyme activities were examined using high performance liquid chromatography (HPLC) assays with probe substrates dextromethorphan and testosterone for CYP2D6 and CYP3A4, respectively. Results from immunoblotting demonstrated the presence of both CYP proteins in bacterial membranes and reduced CO difference spectra of the cell preparations exhibited the characteristic absorbance peak at 450 nm. Co-expressed OxR also demonstrated an activity level comparable to literature values. Kinetic parameters, K(m) and V(max) values determined from the HPLC assays also agreed well with literature values. As a conclusion, the procedures described in this study provide a relatively convenient and reliable means of producing catalytically active CYP isoforms suitable for drug metabolism and interaction studies.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  19. Liew KJ, Ngooi CY, Shamsir MS, Sani RK, Chong CS, Goh KM
    Protein Expr. Purif., 2019 12;164:105464.
    PMID: 31376486 DOI: 10.1016/j.pep.2019.105464
    Xylanases (EC 3.2.1.8) are essential enzymes due to their applications in various industries such as textile, animal feed, paper and pulp, and biofuel industries. Halo-thermophilic Rhodothermaceae bacterium RA was previously isolated from a hot spring in Malaysia. Genomic analysis revealed that this bacterium is likely to be a new genus of the family Rhodothermaceae. In this study, a xylanase gene (1140 bp) that encoded 379 amino acids from the bacterium was cloned and expressed in Escherichia coli BL21(DE3). Based on InterProScan, this enzyme XynRA1 contained a GH10 domain and a signal peptide sequence. XynRA1 shared low similarity with the currently known xylanases (the closest is 57.2-65.4% to Gemmatimonadetes spp.). The purified XynRA1 achieved maximum activity at pH 8 and 60 °C. The protein molecular weight was 43.1 kDa XynRA1 exhibited an activity half-life (t1/2) of 1 h at 60 °C and remained stable at 50 °C throughout the experiment. However, it was NaCl intolerant, and various types of salt reduced the activity. This enzyme effectively hydrolyzed xylan (beechwood, oat spelt, and Palmaria palmata) and xylodextrin (xylotriose, xylotetraose, xylopentaose, and xylohexaose) to produce predominantly xylobiose. This xylanase is the first functionally characterized enzyme from the bacterium, and this work broadens the knowledge of GH10 xylanases.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
  20. Tiong V, Lam CW, Phoon WH, AbuBakar S, Chang LY
    Jpn J Infect Dis, 2017 Jan 24;70(1):26-31.
    PMID: 27169942 DOI: 10.7883/yoken.JJID.2015.501
    The genes for Nipah virus (NiV) proteins were amplified from viral RNA, cloned into the plasmid pTriEx-3 Hygro, expressed, and purified using immobilized metal affinity chromatography. The recombinant N, F, and G NiV proteins (rNiV-N, rNiV-F, and rNiV-G), were successfully expressed in Escherichia coli and purified with a yield of 4, 16, and 4 mg/L, respectively. All 3 recombinant viral proteins reacted with all 19 samples of NiV-positive human sera. The rNiV-N and rNiV-G proteins were the most immunogenic. The recombinant viral proteins did not react with any of the 12 NiV-negative sera. However, serum from a patient with a late-onset relapsing NiV infection complication was found to be primarily reactive to rNiV-G only. Additionally, there is a distinctive variation in the profile of antigen-reactive bands between the sample from a case of relapsing NiV encephalitis and that of acute NiV infection. The overall findings of this study suggest that the recombinant viral proteins have the potential to be developed further for use in the detection of NiV infection, and continuous biosurveillance of NiV infection in resource-limited settings.
    Matched MeSH terms: Recombinant Proteins/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links