Displaying publications 1 - 20 of 254 in total

Abstract:
Sort:
  1. Wang YJ, Shi XP, Peng Y, Tao JP, Zhong ZC
    Sains Malaysiana, 2012;41:649-657.
    Dwarf bamboo is recognized as a significant determinant of the structure and dynamics in temperate forests. Quantitative relationships between the abundance (density and coverage) of dwarf bamboo, Fargesia nitida, and micro-environments, species diversity on the floor were estimated in an Abies faxoniana pure forest in southwest China. Understory microenvironmental conditions (daily differences temperature and moisture, RPPFD under bamboo layer and ground cover) changed dramatically with the bamboo density. Stepwise multiple regression analyses indicated that abundance of F. nitida was mainly correlated with canopy characteristics and disturbance factors in the A. faxoniana pure forest. All richness indices decreased significantly with the bamboo density and RPPFD under bamboo layer. Importance values (IV) of understory species in different bamboo densities and Detrended canonical correspondence analysis (DCCA) indicated three understory plant groups, resistant to high bamboo abundance (Group A), resistant to intermediate bamboo abundance (Group B) and sensitive to bamboo abundance (Group C). These groups mainly responded to abundance of bamboo and RPPFD under bamboo layer, resulted from the integration of characteristics of bamboo, canopy and topography factors. Different bamboo abundance had different influences on understory species diversity and groups. Dense F. nitida condition (> 10 culms/m2) had significant negative effect and 0-5 bamboo condition had not significant negative effect on understory species diversity in A. faxoniana forest. We suggest the fine-scale analysis on effects of bamboo abundance should be taken account into considering in heterogeneous patches in process of the succession and regeneration of natural forests.
    Matched MeSH terms: Regeneration
  2. Nabishah BM, Khalid BA, Morat PB, Zanariyah A
    Exp. Clin. Endocrinol. Diabetes, 1998;106(5):419-24.
    PMID: 9831309
    This study tested the possibility of adrenal autotransplantation in rats. Since the cortex and the medulla of the adrenal gland were from different origin embryologically, either whole adrenal glands (ADR), or capsule and cortex (CAP) or medulla (MED) were autotransplanted in the subcutaneous tissue. The functions of regenerated adrenal nodules were tested by measuring plasma corticosterone levels every fortnight. At the end of 9 weeks the rats were exposed to hypovolemic shock followed by naloxone injection to reverse the shock response. Results showed that rats transplanted with either cortex or whole adrenal started secreting corticosterone at 5 weeks post-transplantation (107.73 +/- 21.98 ng/ml, 126.04 +/- 48.41 ng/ml, respectively). Corticosterone levels increased to the value which were not significantly different from control by 9 weeks post-transplantation. However, rats transplanted with adrenal medulla showed very low corticosterone levels. Nine weeks post-transplantation, the mean blood pressure (MBP) of the CAP group was 135 +/- 13 mmHg and was not significantly different from sham-operated controls, whereas MBP of MED group was significantly lower than sham-operated animals (99 +/- 11 mmHg versus 141 +/- 9 mmHg). The MBP of the ADR group was also lower compared to sham-operated controls (112 +/- 17 mmHg P < 0.05). The MBP of the adrenal group was not statistically significant compared to the CAP group. After 1% body weight haemorrhage, the MBP decreased significantly in ADR (45 +/- 5 mmHg, P < 0.05) and MED group (36 +/- 9 mmHg, P < 0.001) compared to sham-operated rats (78 +/- 11 mmHg) but not in the CAP (56 +/- 9 mmHg). It was concluded that autotransplanted whole adrenal or adrenocortical tissues survived subcutaneously and produced sufficient corticosterone to alleviate haemorrhagic shock. Adrenal medullary tissue failed to regenerate subcutaneously and the presence of adrenal medullary tissue may suppressed the growth of transplanted adrenal gland.
    Matched MeSH terms: Regeneration*
  3. Mahmood SK, Razak IA, Ghaji MS, Yusof LM, Mahmood ZK, Rameli MABP, et al.
    Int J Nanomedicine, 2017;12:8587-8598.
    PMID: 29238193 DOI: 10.2147/IJN.S145663
    The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit's radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material.
    Matched MeSH terms: Bone Regeneration*
  4. Zainol Abidin IZ, Fazry S, Jamar NH, Ediwar Dyari HR, Zainal Ariffin Z, Johari AN, et al.
    Sci Rep, 2020 08 25;10(1):14165.
    PMID: 32843675 DOI: 10.1038/s41598-020-70962-7
    In Malaysia, Piper sarmentosum or 'kaduk' is commonly used in traditional medicines. However, its biological effects including in vivo embryonic toxicity and tissue regenerative properties are relatively unknown. The purpose of this study was to determine zebrafish (Danio rerio) embryo toxicities and caudal fin tissue regeneration in the presence of P. sarmentosum aqueous extracts. The phytochemical components and antioxidant activity of the extract were studied using GC-MS analysis and DPPH assay, respectively. Embryo toxicity tests involving survival, heartbeat, and morphological analyses were conducted to determine P. sarmentosum extract toxicity (0-60 µg/mL); concentrations of 0-400 µg/mL of the extract were used to study tissue regeneration in the zebrafish caudal fin. The extract contained several phytochemicals with antioxidant activity and exhibited DPPH scavenging activity (IC50 = 50.56 mg/mL). Embryo toxicity assays showed that a concentration of 60 μg/mL showed the highest rates of lethality regardless of exposure time. Slower embryogenesis was observed at 40 µg/mL, with non-viable embryos first detected at 50 µg/mL. Extracts showed significant differences (p 
    Matched MeSH terms: Regeneration/drug effects*
  5. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: Bone Regeneration/drug effects*
  6. Shakinah Salleh, Zaiton Ahmad, Affrida Abu Hassan, Yahya Awang, Yutaka Oono
    MyJurnal
    Chrysanthemum morifolium is an important temperate cut flower for Malaysian floriculture
    industry and the lack of new local owned varieties led to this mutation breeding research. The
    objective of this study was to compare the effectiveness of ion beam irradiation in generating
    mutations on ray florets and nodal explants of Chrysanthemum morifolium cv. ‘Reagan Red’. Ion
    beams has become an efficient physical mutagen for mutation breeding. The ray florets and nodal
    explants were irradiated with ion beams at doses 0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy.
    The 50% of in vitro shoot regeneration (RD50) for ray florets explants was 2.0 Gy and for nodal
    explants was 4.0 Gy. Thus, relative biological effectiveness (RBE) for ray florets was found 2.0
    times higher than the nodal explants. The regenerated plantlets were planted in the greenhouse at
    MARDI, Cameron Highlands for morphological screening. Overall performance of survival
    plantlets derived from in vitro nodal and ray floret explants was recorded. The characters studied
    include plant morphology and flowering characteristic. The ray florets explants were found to be
    more sensitive to ion beam irradiation and generated more mutations as compared to nodal
    explants.
    Matched MeSH terms: Regeneration
  7. Muhammad-Azam F, Nur-Fazila SH, Ain-Fatin R, Mustapha Noordin M, Yimer N
    Vet World, 2019 Nov;12(11):1682-1688.
    PMID: 32009746 DOI: 10.14202/vetworld.2019.1682-1688
    Background and Aim: Laboratory mice are widely used as a research model to provide insights into toxicological studies of various xenobiotic. Acetaminophen (APAP) is an antipyretic and analgesic drug that is commonly known as paracetamol, an ideal hepatotoxicant to exhibit centrilobular necrosis in laboratory mice to resemble humans. However, assessment of histopathological changes between mouse strains is important to decide the optimal mouse model used in APAP toxicity study. Therefore, we aim to assess the histomorphological features of APAP-induced liver injury (AILI) in BALB/C and Institute of Cancer Research (ICR) mice.

    Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods.

    Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult.

    Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.

    Matched MeSH terms: Liver Regeneration
  8. Lew KS, Othman R, Ishikawa K, Yeoh FY
    J Biomater Appl, 2012 Sep;27(3):345-58.
    PMID: 21862511 DOI: 10.1177/0885328211406459
    This review summarises the major developments of macroporous bioceramics used mainly for repairing bone defects. Porous bioceramics have been receiving attention ever since their larger surface area was reported to be beneficial for the formation of more rigid bonds with host tissues. The study of porous bioceramics is important to overcome the less favourable bonds formed between dense bioceramics and host tissues, especially in healing bone defects. Macroporous bioceramics, which have been studied extensively, include hydroxyapatite, tricalcium phosphate, alumina, and zirconia. The pore size and interconnections both have significant effects on the growth rate of bone tissues. The optimum pore size of hydroxyapatite scaffolds for bone growth was found to be 300 µm. The existence of interconnections between pores is critical during the initial stage of tissue ingrowth on porous hydroxyapatite scaffolds. Furthermore, pore formation on β-tricalcium phosphate scaffolds also allowed the impregnation of growth factors and cells to improve bone tissues growth significantly. The formation of vascularised tissues was observed on macroporous alumina but did not take place in the case of dense alumina due to its bioinert nature. A macroporous alumina coating on scaffolds was able to improve the overall mechanical properties, and it enabled the impregnation of bioactive materials that could increase the bone growth rate. Despite the bioinertness of zirconia, porous zirconia was useful in designing scaffolds with superior mechanical properties after being coated with bioactive materials. The pores in zirconia were believed to improve the bone growth on the coated system. In summary, although the formation of pores in bioceramics may adversely affect mechanical properties, the advantages provided by the pores are crucial in repairing bone defects.
    Matched MeSH terms: Bone Regeneration*
  9. Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F
    PeerJ, 2022;10:e13356.
    PMID: 35529494 DOI: 10.7717/peerj.13356
    BACKGROUND: The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration.

    METHOD: In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation.

    RESULTS: MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p 

    Matched MeSH terms: Bone Regeneration
  10. Kardia E, Zakaria N, Sarmiza Abdul Halim NS, Widera D, Yahaya BH
    Regen Med, 2017 03;12(2):203-216.
    PMID: 28244823 DOI: 10.2217/rme-2016-0112
    The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative clinical strategy for treating acute and chronic lung disorders. Several preclinical reports demonstrated that MSCs can secrete multiple paracrine factors and that their immunomodulatory properties can support endothelial and epithelial regeneration, modulate the inflammatory cascade and protect lungs from damage. The effects of MSC transplantation into patients suffering from lung diseases should be fully evaluated through careful assessment of safety and associated risks, which is a prerequisite for translation of preclinical research into clinical practice. In this article, we summarize the current status of preclinical research and review initial MSC-based clinical trials for treating lung injuries and lung disorders.
    Matched MeSH terms: Regeneration/physiology*
  11. Kamalaldin N', Jaafar M, Zubairi SI, Yahaya BH
    Adv Exp Med Biol, 2019;1084:1-15.
    PMID: 29299875 DOI: 10.1007/5584_2017_130
    The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.
    Matched MeSH terms: Bone Regeneration
  12. Yahaya B
    ScientificWorldJournal, 2012;2012:961684.
    PMID: 23049478 DOI: 10.1100/2012/961684
    Understanding the mechanisms underlying the process of regeneration and repair of airway epithelial structures demands close characterization of the associated cellular and molecular events. The choice of an animal model system to study these processes and the role of lung stem cells is debatable since ideally the chosen animal model should offer a valid comparison with the human lung. Species differences may include the complex three-dimensional lung structures, cellular composition of the lung airway as well as transcriptional control of the molecular events in response to airway epithelium regeneration, and repair following injury. In this paper, we discuss issues related to the study of the lung repair and regeneration including the role of putative stem cells in small- and large-animal models. At the end of this paper, the author discuss the potential for using sheep as a model which can help bridge the gap between small-animal model systems and humans.
    Matched MeSH terms: Regeneration*
  13. Kardia E, Yusoff NM, Zakaria Z, Yahaya B
    J Aerosol Med Pulm Drug Deliv, 2014 Feb;27(1):30-4.
    PMID: 23409833 DOI: 10.1089/jamp.2012.1020
    Cell-based therapy has great potential to treat patients with lung diseases. The administration of cells into an injured lung is one method of repairing and replacing lost lung tissue. However, different types of delivery have been studied and compared, and none of the techniques resulted in engraftment of a high number of cells into the targeted organ. In this in vitro study, a novel method of cell delivery was introduced to investigate the possibility of delivering aerosolized skin-derived fibroblasts.
    Matched MeSH terms: Regeneration*
  14. Yadav A, Huang TC, Chen SH, Ramasamy TS, Hsueh YY, Lin SP, et al.
    J Neuroinflammation, 2021 Oct 16;18(1):238.
    PMID: 34656124 DOI: 10.1186/s12974-021-02273-1
    BACKGROUND: Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration.

    METHODS: We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation.

    RESULTS: Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group.

    CONCLUSIONS: Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro.

    Matched MeSH terms: Nerve Regeneration/drug effects; Nerve Regeneration/physiology*
  15. Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, et al.
    Front Pediatr, 2021;9:615508.
    PMID: 33791258 DOI: 10.3389/fped.2021.615508
    Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
    Matched MeSH terms: Regeneration
  16. Leung YY, Yeung AWK, Ismail IN, Wong NSM
    Int J Oral Maxillofac Surg, 2020 Oct;49(10):1360-1366.
    PMID: 32340909 DOI: 10.1016/j.ijom.2020.03.016
    A residual bone defect at the distal aspect of the adjacent second molar may occur after total removal of the lower third molar. Lower third molar coronectomy has been proved to be a safe alternative to total removal, but the extent of bone regeneration at the adjacent tooth after coronectomy is not well reported. The aim of this prospective study was to investigate the long-term bone regeneration at the distal aspect of the adjacent second molar after lower third molar coronectomy. Preoperative and postoperative cone beam computed tomography scans were measured to assess bone regeneration at the distobuccal (DB), mid-distal (MD), and distolingual (DL) aspects of the lower second molar. Forty-eight coronectomies in 37 patients (23 female) with a mean±standard deviation age of 29.1±7.2 years were assessed. The mean follow-up was 93.2±8.7 months. The mean bone level increase at DB, MD, and DL aspects was 3.2±1.6mm, 3.5±1.5mm, and 3.2±1.6mm, respectively; the bone levels were significantly higher than the preoperative measurements (P<0.001). Age and impaction patterns were not factors affecting bone regeneration. Based on this study, it appears that coronectomy of the lower third molar brings favourable bone regeneration at the distal aspect of the adjacent second molar.
    Matched MeSH terms: Bone Regeneration
  17. Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, et al.
    Cells, 2021 08 25;10(9).
    PMID: 34571842 DOI: 10.3390/cells10092194
    Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
    Matched MeSH terms: Nerve Regeneration/drug effects*
  18. Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, et al.
    Exp Physiol, 2016 12 01;101(12):1492-1505.
    PMID: 27634415 DOI: 10.1113/EP085727
    NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
    Matched MeSH terms: Liver Regeneration/drug effects; Liver Regeneration/physiology*
  19. Ming NGJ, Binte Mostafiz S, Johon NS, Abdullah Zulkifli NS, Wagiran A
    Plants (Basel), 2019 May 30;8(6).
    PMID: 31151227 DOI: 10.3390/plants8060144
    The development of efficient tissue culture protocol for somatic embryo would facilitate the genetic modification breeding program. The callus induction and regeneration were studied by using different parameters i.e., auxins, cytokinins, and desiccation treatment. Scanning electron microscopy and histological analysis were performed to identify the embryogenic callus for regeneration. The callus percentage results showed that MS (Murashige and Skoog) basal medium supplemented with 3 mg/L 2, 4-D and 30g/L maltose were the optimal callus induction medium for MR220 (80%) and MR220-CL2 (95%). The morphology of the embryogenic callus was confirmed by the SEM (Scanning Electron Microscopy) (presence of extracellular matrix surface network) and later by histological analysis. Finally, MS media supplemented with 0.5 mg/L NAA (Naphthalene Acetic Acid), 2 mg/L kin, and 1 mg/L BAP were selected as the optimum regeneration media treatment while callus desiccated for 48 h was proved to produce more plantlets in MR220 (60%) and MR220-CL2 (73.33%) compared to control treatment (without desiccation). The protocol presented here showed the necessity for the inclusion of partial desiccation as an important step in the tissue culture protocol of Malaysian indica rice genotypes in order to enhance their regeneration potential.
    Matched MeSH terms: Regeneration
  20. Taha RM, Wafa SN
    ScientificWorldJournal, 2012;2012:359413.
    PMID: 22593677 DOI: 10.1100/2012/359413
    Tissue culture studies of Celosia cristata were established from various explants and the effects of various hormones on morphogenesis of this species were examined. It was found that complete plant regeneration occurred at highest percentage on MS medium supplemented with 2.0 mg/L NAA and 1.5 mg/L BAP, with the best response showed by shoot explants. In vitro flowering was observed on MS basal medium after six weeks. The occurrence of somaclonal variation and changes in cellular behavior from in vivo and in vitro grown plants were investigated through cytological studies and image analysis. It was observed that Mitotic Index (MI), mean chromosome numbers, and mean nuclear to cell area ratio of in vitro root meristem cells were slightly higher compared to in vivo values. However, in vitro plants produced lower mean cell areas but higher nuclear areas when compared to in vivo plants. Thus, no occurrence of somaclonal variation was detected, and this was supported by morphological features of the in vitro plants.
    Matched MeSH terms: Regeneration/drug effects; Regeneration/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links