Displaying publications 1 - 20 of 234 in total

Abstract:
Sort:
  1. Igarashi S, Yoshida S, Kenzo T, Sakai S, Nagamasu H, Hyodo F, et al.
    Oecologia, 2024 Mar;204(3):717-726.
    PMID: 38483587 DOI: 10.1007/s00442-024-05527-w
    Most canopy species in lowland tropical rain forests in Southeast Asia, represented by Dipterocarpaceae, undergo mast reproduction synchronously at community level during a general flowering event. Such events occur at irregular intervals of 2-10 years. Some species do not necessarily participate in every synchronous mast reproduction, however. This may be due to a lack of carbohydrate resources in the trees for masting. We tested the hypothesis that interspecific differences in the time required to store assimilates in trees for seed production are due to the frequency of masting and/or seed size in each species. We examined the relationship between reproductive frequency and the carbon accumulation period necessary for seed production, and between the seed size and the period, using radiocarbon analysis in 18 dipterocarp canopy species. The mean carbon accumulation period was 0.84 years before seed maturation in all species studied. The carbon accumulation period did not have any significant correlation with reproductive frequency or seed size, both of which varied widely across the species studied. Our results show that for seed production, dipterocarp masting species do not use carbon assimilates stored for a period between the masting years, but instead use recent photosynthates produced primarily in a masting year, regardless of the masting interval or seed size of each species. These findings suggest that storage of carbohydrate resources is not a limiting factor in the masting of dipterocarps, and that accumulation and allocation of other resources is important as a precondition for participation in general flowering.
    Matched MeSH terms: Reproduction
  2. Razali RS, Rahmah S, Shirly-Lim YL, Ghaffar MA, Mazelan S, Jalilah M, et al.
    Sci Rep, 2024 Feb 05;14(1):2903.
    PMID: 38316820 DOI: 10.1038/s41598-024-52864-0
    This study was conducted to investigate the energy mobilisation preference and ionoregulation pattern of female tilapia, Oreochromis sp. living in different environments. Three different treatments of tilapia as physiology compromising model were compared; tilapia cultured in recirculating aquaculture system (RAS as Treatment I-RAS), tilapia cultured in open water cage (Treatment II-Cage) and tilapia transferred from cage and cultured in RAS (Treatment III-Compensation). Results revealed that tilapia from Treatment I and III mobilised lipid to support gonadogenesis, whilst Treatment II tilapia mobilised glycogen as primary energy for daily exercise activity and reserved protein for growth. The gills and kidney Na+/K+ ATPase (NKA) activities remained relatively stable to maintain homeostasis with a stable Na+ and K+ levels. As a remark, this study revealed that tilapia strategized their energy mobilisation preference in accessing glycogen as an easy energy to support exercise metabolism and protein somatogenesis in cage culture condition, while tilapia cultured in RAS mobilised lipid for gonadagenesis purposes.
    Matched MeSH terms: Reproduction
  3. Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, et al.
    Biomolecules, 2023 Dec 07;13(12).
    PMID: 38136630 DOI: 10.3390/biom13121759
    Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
    Matched MeSH terms: Reproduction/genetics
  4. Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, et al.
    Environ Res, 2023 Nov 01;236(Pt 2):116810.
    PMID: 37532209 DOI: 10.1016/j.envres.2023.116810
    Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
    Matched MeSH terms: Reproduction
  5. Freeman T, Miles L, Ying K, Mat Yasin S, Lai WT
    Sociol Health Illn, 2023 Jun;45(5):947-970.
    PMID: 34227694 DOI: 10.1111/1467-9566.13323
    Despite the centrality of sexual and reproductive health (SRH) to UN Sustainable Development Goals (SDGs), women migrant workers in Malaysia face an environment inimical to their SRH needs. Drawing on qualitative case study material, we present the first empirical application of the capability approach (CA) to explore the reproductive health needs of women migrant workers in a developing country, offering an original analysis of the capability for SRH of these women. Specifically, we explore the resources available to them; their opportunities and freedoms ("capabilities"); and factors that mediate transformation of resources into capability sets ("conversion factors"). While SRH information and health care are notionally available, women migrant workers face multiple challenges in converting resources into functionings, constraining the achievement of capability for SRH. Challenges include language barriers, personal beliefs, power relations between workers and employers and the consequences of current migration policy. We consider the scale of the challenges facing these women in securing SRH rights, the difficulties of operationalising the CA within such a setting, and the implications of our findings for the adequacy of the CA in supporting marginalised populations.
    Matched MeSH terms: Reproduction
  6. Barber CV, Yo JH, Rahman RA, Wallace EM, Palmer KR, Marshall SA
    Placenta, 2023 May;136:35-41.
    PMID: 37028223 DOI: 10.1016/j.placenta.2023.03.008
    Activin A is a two-subunit protein belonging to the transforming growth factor β superfamily. First discovered almost three decades ago, it has since been implicated in diverse physiological roles, ranging from wound repair to reproduction. After 30 years of research, altered activin A levels are now understood to be associated with the development of various diseases, making activin A a potential therapeutic target. In pregnancy, the placenta and fetal membranes are major producers of activin A, with significantly enhanced serum concentrations now recognised as a contributor to numerous gestational disorders. Evidence now suggests that circulating levels of activin A may be clinically relevant in the early detection of pregnancy complications, including miscarriage and preeclampsia. This review aims to summarise our current understanding of activin A as a potential diagnostic marker in common pregnancy pathologies.
    Matched MeSH terms: Reproduction/physiology
  7. Nasution S, Nuraini
    Pak J Biol Sci, 2023 Apr;26(5):213-223.
    PMID: 37859553 DOI: 10.3923/pjbs.2023.213.223
    <b>Background and Objective:</b> Bamboo clam <i>Solen lamarckii</i> is one of the bivalve's species that have important economic value in Indonesian waters. Knowledge of the reproductive biology of a species is essential for proper and sustainable fisheries management. Monthly variations in the gonad maturity level of the clams from the coastal waters of Bengkalis Island Indonesia, were examined. <b>Materials and Methods:</b> Samples of the clam were collected monthly at the intertidal zone during low tide from May to September, 2020. A total of 239 specimens of which 116 females and 123 males were examined. Reproductive aspects observed in this study included sex ratio, gonadosomatic index, monthly gonadal maturity level and female fecundity. Mature female or near spawning phases were used for fecundity estimation. The sex ratios were analysed using a Chi-quadrat-Test, whereas to determine differences in fecundity between female individuals tested by Analysis of Variance. <b>Results:</b> Based on the gonadosomatic index (GSI) and histological observation of both sexes's gonads, it can be concluded that early spawning occurred in August and the peak seemed to take place during October-November. The sex ratios were analysed using a Chi-quadrat-Test which was not different from parity. Gonad maturation time between males and females indicates synchrony and no hermaphrodites were observed in the collection. Females shell length range of 75.5 to 89.3 mm produced 4.63×103-7.43×103 eggs ind-1 female (N = 10). Females with a shell length between 75.5 and 89.3 mm had varying fecundities, but analysis of variance showed no significant difference (Sig>0.05). <b>Conclusion:</b> Based on the gonadosomatic index (GSI) and histological analysis, <i>S. lamarckii</i> in Bengkalis waters spawned in August. Males and females showed spawning synchrony.
    Matched MeSH terms: Reproduction*
  8. Kim JH, Ajani PA, Murray SA, Kang SM, Kim SH, Lim HC, et al.
    Harmful Algae, 2023 Mar;123:102392.
    PMID: 36894213 DOI: 10.1016/j.hal.2023.102392
    Pseudo-nitzschia pungens is a widely distributed marine pennate diatom. Hybrid zones, regions in which two different genotypes may interbreed, are important areas for speciation and ecology, and have been reported across the globe for this species. However, sexual reproduction between differing clades in the natural environment is yet to be observed and is difficult to predict. Here we carried out experiments using two mono-clonal cultures of P. pungens from different genotypes to measure the frequency and timing of sexual reproduction across varying biotic (growth phases and cell activity potential) and abiotic conditions (nutrients, light, turbulence). We found the mating rates and number of zygotes gradually decreased from exponential to late stationary growth phases. The maximum zygote abundance observed was 1,390 cells mL-1 and the maximum mating rate was 7.1%, both which occurred during the exponential growth phase. Conversely, only 9 cells mL-1 and a maximum mating rate of 0.1% was observed during the late stationary phase. We also found the higher the relative potential cell activity (rPCA) in parent cells, as determined by the concentration of chlorophyll a per cell and the ratio of colony formation during parent cultivations, revealed higher mating rates. Furthermore, sexual events were reduced under nutrient enrichment conditions, and mating pairs and zygotes were not formed under aphotic (dark) or shaking culture conditions (150 rpm). In order to understand the sexual reproduction of Pseudo-nitzschia in the natural environment, our results highlight that it is most likely the combination of both biotic (growth phase, Chl. a content) and abiotic factors (nutrients, light, turbulence) that will determine the successful union of intraspecific populations of P. pungens in any given region.
    Matched MeSH terms: Reproduction
  9. Horie Y, Nomura M, Ramaswamy BR, Harino H, Yap CK, Okamura H
    PMID: 36470400 DOI: 10.1016/j.cbpc.2022.109531
    Water pollution due to plasticizers is one of the most severe environmental problems worldwide. Phthalate plasticizers can act as endocrine disruptors in vertebrates. In this study, we investigated whether the non-phthalate bis(2-ethylhexyl) sebacate (DEHS) plasticizer can act as an endocrine disruptor by evaluating changes in the expression levels of thyroid hormone-related, reproduction-related, and estrogen-responsive genes of Japanese medaka (Oryzias latipes) exposed to the plasticizer. Following the exposure, the gene expression levels of thyroid-stimulating hormone subunit beta (tshβ), deiodinase 1 (dio1), and thyroid hormone receptor alpha (trα) did not change. Meanwhile, DEHS suppressed dio2 expression, did not induce swim bladder inflation, and eventually reduced the swimming performance of Japanese medaka. These findings indicate that DEHS can potentially disrupt the thyroid hormone-related gene expression and metabolism of these fish. However, exposure to DEHS did not induce changes in the gene expression levels of kisspeptin 1 (kiss1), gonadotropin-releasing hormone (gnrh), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg) in a dose-dependent manner. This is the first report providing evidence that DEHS can disrupt thyroid hormone-related metabolism in fish.
    Matched MeSH terms: Reproduction
  10. Rozaimi R, Shu-Chien AC, Wang Y, Sutikno S, Ikhwanuddin M, Shi X, et al.
    PeerJ, 2023;11:e15143.
    PMID: 37033733 DOI: 10.7717/peerj.15143
    Asymmetric body traits in bilateral organisms are common and serve a range of different functions. In crustaceans, specifically among brachyuran crabs, heterochely and handedness in some species are known to aid in behavioural responses such as food acquisition, and sexual and territorial displays. However, the heterochely of the intertidal mud crab genus Scylla is still poorly understood. This study investigated the cheliped morphometric characteristics of orange mud crab Scylla olivacea and the relation of heterochely and handedness to sex. Scylla olivacea is heterochelous, with predominant right-handed (70.2%). Three morphometric variables, i.e., propodus length (PL), propodus depth (PD), and propodus width (PW) were significantly larger in the right cheliped and the estimated handedness based on these three variables were consistent with the presence of molariform teeth. The effect of sex had no influence on the occurrence of heterochely or handedness. The frequency of left-handedness increased with size, especially in males. We postulate that handedness reversal, a phenomenon seen in other crab species when the dominant hand is lost, also occurs in S. olivacea, thereby resulting in a change in left-handedness frequency. The use of chelipeds by males in mate and territorial defenses might provide an explanation for the higher risk of losing a dominant cheliped and thus, higher left-handedness frequency compared to females. Future behavioural research could shed light on the selective forces that affect the handedness distribution in mud crabs. Knowledge on heterochely and handedness of mud crabs could be useful for future development of less aggressive crab populations by claw reversal and the optimisation of limb autotomy techniques.
    Matched MeSH terms: Reproduction
  11. Lim KC, Then AY, Loh KH
    PeerJ, 2023;11:e15849.
    PMID: 37637173 DOI: 10.7717/peerj.15849
    Small coastal demersal sharks form a major proportion of the sharks landed in Malaysia. However, little is known about their feeding ecology and reproduction. This study sought to elucidate the dietary patterns, role of ontogeny in prey consumption, and reproductive biology of four dominant small demersal shark species in Malaysian waters: the Hasselt's bamboo shark, Chiloscyllium hasseltii; brownbanded bamboo shark, C. punctatum; spadenose shark, Scoliodon laticaudus; and Pacific spadenose shark, S. macrorhynchos. Dietary analyses revealed a high overlap in prey taxa consumed; clear resource partitioning among co-occurring species based on the percentage Prey-specific Index of Relative Importance (%PSIRI), with higher fish %PSIRI for Chiloscyllium hasseltii, higher cephalopod %PSIRI for C. punctatum, and higher crustacean %PSIRI for both Scoliodon species; and an ontogenetic diet shift, seen through changes in prey size. Based on the examination of reproductive organs, the results showed larger sizes at maturity for males compared to females for all four species; no obvious reproductive cycles, based on hepatosomatic and gonadosomatic indices for all species; female bias in the sex ratio of the embryos of Scoliodon species; and increased reproductive output (number of eggs or embryos and size of eggs) with larger female size for C. hasseltii and Scoliodon species. The partitioning of food resources minimizes direct competition for food and supports coexistence within shared coastal habitats. The reproductive strategies of these small coastal sharks appear to be favorable for supporting short-term population productivity; although a reduction in fishing pressure, especially from bottom trawlers, is essential for the long-term sustainable use of these sharks.
    Matched MeSH terms: Reproduction*
  12. Kamimura Y, Lee CY
    PLoS One, 2023;18(11):e0293701.
    PMID: 37917643 DOI: 10.1371/journal.pone.0293701
    Many animals take advantage of the shaded, humid, and protected environments in subcortical spaces, i.e., thin spaces under the loosened bark of dead trees. Permanent inhabitants of subcortical spaces often show specialized morphologies, such as a miniaturized or dorsoventrally flattened body. However, the evolutionary consequences of these specialized morphologies on behavioral, ecological, and life-history traits have been little studied. We studied the mating biology and anatomy of Platylabia major (usually placed in the family Anisolabididae), which is an obligate inhabitant of subcortical spaces with a paper-like flattened body, and compared them with those of two thicker, spongiphorid earwigs, Nesogaster amoenus and Paralabellula curvicauda. Mating trials in various settings showed that Pl. major requires thin spaces sandwiched by two planes to accomplish genital coupling and insemination. In contrast, the thicker species, although also frequently found in subcortical spaces, could mate on a single horizontal plane due to the ability of the male to twist its abdomen through approximately 180°. Examination by micro-computed tomography and a reagent-based clearing technique revealed no substantive differences in the configuration of mid-abdominal musculature between the species. The dorsal and lateral muscles of Pl. major, which are almost parallel to the antero-posterior body axis for accommodation within the thin abdomen, seemed incapable of producing the power to twist the abdomen. The abdominal musculature conforms to a simple pattern in both male and female earwigs, which is repeated in each of the pregenital segments. We conclude that small differences in the range of motion of each abdominal segment can result in large differences in possible mating postures and positions. Surgical experiments also demonstrated that both right and left penises of Pl. major are competent and used for insemination with no lateral bias, as in most other earwigs with twin penises studied to date.
    Matched MeSH terms: Reproduction*
  13. Suhaimi AH, Kobayashi MJ, Satake A, Ng CC, Lee SL, Muhammad N, et al.
    PeerJ, 2023;11:e16368.
    PMID: 38047035 DOI: 10.7717/peerj.16368
    Climatic factors have commonly been attributed as the trigger of general flowering, a unique community-level mass flowering phenomenon involving most dipterocarp species that forms the foundation of Southeast Asian tropical rainforests. This intriguing flowering event is often succeeded by mast fruiting, which provides a temporary yet substantial burst of food resources for animals, particularly frugivores. However, the physiological mechanism that triggers general flowering, particularly in dipterocarp species, is not well understood largely due to its irregular and unpredictable occurrences in the tall and dense forests. To shed light on this mechanism, we employed ecological transcriptomic analyses on an RNA-seq dataset of a general flowering species, Shorea curtisii (Dipterocarpaceae), sequenced from leaves and buds collected at multiple vegetative and flowering phenological stages. We assembled 64,219 unigenes from the transcriptome of which 1,730 and 3,559 were differentially expressed in the leaf and the bud, respectively. Differentially expressed unigene clusters were found to be enriched with homologs of Arabidopsis thaliana genes associated with response to biotic and abiotic stresses, nutrient level, and hormonal treatments. When combined with rainfall data, our transcriptome data reveals that the trees were responding to a brief period of drought prior to the elevated expression of key floral promoters and followed by differential expression of unigenes that indicates physiological changes associated with the transition from vegetative to reproductive stages. Our study is timely for a representative general flowering dipterocarp species that occurs in forests that are under the constant threat of deforestation and climate change as it pinpoints important climate sensitive and flowering-related homologs and offers a glimpse into the cascade of gene expression before and after the onset of floral initiation.
    Matched MeSH terms: Reproduction/genetics
  14. Mohtar JA, Shahimin MFM
    Dev Genes Evol, 2022 Dec;232(5-6):125-136.
    PMID: 36190549 DOI: 10.1007/s00427-022-00697-0
    Spiders have emerged as one of the leading model organisms in many research fields due to their compelling biology. Often, scientific investigations involving the use of spiders face inevitable problems associated with the lack of specimens from laboratory stock, resulting in difficulties in yielding reproducible investigations for predictive research. Thus, several species of well-studied spiders, including Parasteatoda tepidariorum, have been successfully bred for such purposes. Crossopriza lyoni is a Haplogyne spider, globally distributed and widespread in human inhabitants, prompting interest in various studies over the last decades. Despite its scientific importance, no laboratory-bred C. lyoni has been documented. Therefore, we describe a successful captive breeding system of the species under controlled conditions to establish a laboratory stock culture. Methods for mating induction, egg collection and segregation, artificial embryo incubation, and colony husbandry are discussed. The technique presented is a simple and low-cost approach that is reliable for C. lyoni propagation in the laboratory over several generations.
    Matched MeSH terms: Reproduction
  15. Goldsworthy NC, Srinivasan M, Smallhorn-West P, Cheah LC, Munday PL, Jones GP
    J Fish Biol, 2022 Oct;101(4):996-1007.
    PMID: 35818109 DOI: 10.1111/jfb.15161
    Body size influences many life-history traits, with small-bodied animals tending to have short life spans, high mortality and greater reproductive effort early in life. In this study, the authors investigated the life-history traits and reproductive strategies of three small-bodied coral reef gobies of the genus Trimma: Trimma benjamini, Trimma capostriatum and Trimma yanoi. The authors found all Trimma species studied attained a small body size of <25 mm, had a short life span of <140 days and experienced high estimated daily mortality of 3.0%-6.7%. Furthermore, the pelagic larval phase accounted for 25.3%-28.5% of the maximum life span, and maturation occurred between 74.1 and 82.1 days at 15.2-15.8 mm, leaving only 35%-43% of the total life span as a reproductively viable adult. All mature individuals had gonad structures consistent with bidirectional sex change, with bisexual gonads including both ovarian and testicular portions separated by a thin wall of connective tissue. In the female and male phases, only ovaries or testes were mature, whereas gonadal tissue of the non-active sex remained. One T. benjamini individual and one T. yanoi individual had ovarian and testicular tissue active simultaneously. The results of this study highlight the life-history challenges small CRFs face on their path to reproduction and reproductive strategies that could be beneficial in fishes with high and unpredictable mortality and short reproductive life spans.
    Matched MeSH terms: Reproduction
  16. Wong WC, Tung HJ, Nurul Fadhilah M, Midot F, Lau SYL, Melling L, et al.
    Mycologia, 2022;114(6):947-963.
    PMID: 36239960 DOI: 10.1080/00275514.2022.2118512
    Ganoderma boninense, the causal agent of basal stem rot (BSR) disease, has been recognized as a major economic threat to commercial plantings of oil palm (Elaeis guineensis Jacq.) in Southeast Asia, which supplies 86% of the world's palm oil. High genetic diversity and gene flow among regional populations of 417 G. boninense isolates collected from Sabah, Sarawak, and Peninsular Malaysia (Malaysia) and Sumatra (Indonesia) were demonstrated using 16 microsatellite loci. Three genetic clusters and different admixed populations of G. boninense across regions were detected, and they appeared to follow the spread of the fungus from the oldest (Peninsular Malaysia and Sumatra) to younger generations of oil palm plantings (Sabah and Sarawak). Low spatial genetic differentiation of G. boninense (FST = 0.05) among the sampling regions revealed geographically nonrestricted gene dispersal, but isolation by distance was still evident. Analysis of molecular variance (AMOVA) confirmed the little to no genetic differentiation among the pathogen populations and the three genetic clusters defined by STRUCTURE and minimum spanning network. Despite G. boninense being highly outcrossing and spread by sexual spores, linkage disequilibrium was detected in 7 of the 14 populations. Linkage disequilibrium indicated that the reproduction of the fungus was not entirely by random mating and genetic drift could be an important structuring factor. Furthermore, evidence of population bottleneck was indicated in the oldest oil palm plantations as detected in genetic clusters 2 and 3, which consisted mainly of Peninsular Malaysia and Sumatra isolates. The population bottleneck or founding event could have arisen from either new planting or replanting after the removal of large number of palm hosts. The present study also demonstrated that migration and nonrandom mating of G. boninense could be important for survival and adaptation to new palm hosts.
    Matched MeSH terms: Reproduction
  17. Syed Abdullah SZ
    PLoS One, 2022;17(12):e0279629.
    PMID: 36574445 DOI: 10.1371/journal.pone.0279629
    Menstruation is arguably the first stage in a woman's reproductive cycle. Among the Temiar, as in many other traditional societies, menstruation represents a time during which a woman is considered to be vulnerable or polluted and there may be food or behavior avoidances and restrictions. The Temiar is one of the eighteen indigenous sub-ethnic groups in Peninsular Malaysia. The objective of this study was to examine the food restrictions and taboos imposed on menstruating Temiar women. A total of 38 participants from four different locations took part in five focus group discussions which represents different lifestyle experiences of the Temiar sub-ethnic group. The findings unfolds many practices: foods to be avoided and spirit in the landscape in order to protect the menstruating woman; isolating the menstruating woman in order to protect the community; consequences of not observing the menstruation food taboos and maintenance of the menstrual taboos. The menstruating women in all locations were prohibited from consuming salt, cooking oils, wild or domesticated animals, and Monosodium glutamate to protect themselves from the excessive flow of menstrual blood and future ill-health. They must eat separately from others because they are deemed polluted and dangerous to the community. The study concludes that the taboos directed towards the menstruating women often do have a caring and protective intention. Menstrual restrictions function not only to protect the menstruating women and the community but also to keep intact the symbolic boundary between human and the non-human world from which disease and weakness comes.
    Matched MeSH terms: Reproduction
  18. Law KB, M Peariasamy K, Mohd Ibrahim H, Abdullah NH
    Sci Rep, 2021 10 18;11(1):20574.
    PMID: 34663839 DOI: 10.1038/s41598-021-00013-2
    The conventional susceptible-infectious-recovered (SIR) model tends to magnify the transmission dynamics of infectious diseases, and thus the estimated total infections and immunized population may be higher than the threshold required for infection control and eradication. The study developed a new SIR framework that allows the transmission rate of infectious diseases to decline along with the reduced risk of contact infection to overcome the limitations of the conventional SIR model. Two new SIR models were formulated to mimic the declining transmission rate of infectious diseases at different stages of transmission. Model A utilized the declining transmission rate along with the reduced risk of contact infection following infection, while Model B incorporated the declining transmission rate following recovery. Both new models and the conventional SIR model were then used to simulate an infectious disease with a basic reproduction number (r0) of 3.0 and a herd immunity threshold (HIT) of 0.667 with and without vaccination. Outcomes of simulations were assessed at the time when the total immunized population reached the level predicted by the HIT, and at the end of simulations. Further, all three models were used to simulate the transmission dynamics of seasonal influenza in the United States and disease burdens were projected and compared with estimates from the Centers for Disease Control and Prevention. For the simulated infectious disease, in the initial phase of the outbreak, all three models performed expectedly when the sizes of infectious and recovered populations were relatively small. As the infectious population increased, the conventional SIR model appeared to overestimate the infections even when the HIT was achieved in all scenarios with and without vaccination. For the same scenario, Model A appeared to attain the level predicted by the HIT and in comparison, Model B projected the infectious disease to be controlled at the level predicted by the HIT only at high vaccination rates. For infectious diseases with high r0, and at low vaccination rates, the level at which the infectious disease was controlled cannot be accurately predicted by the current theorem. Transmission dynamics of infectious diseases with herd immunity can be accurately modelled by allowing the transmission rate of infectious diseases to decline along with the reduction of contact infection risk after recovery or vaccination. Model B provides a credible framework for modelling infectious diseases with herd immunity in a randomly mixed population.
    Matched MeSH terms: Basic Reproduction Number
  19. Ayinla AY, Othman WAM, Rabiu M
    Acta Biotheor, 2021 Sep;69(3):225-255.
    PMID: 33877474 DOI: 10.1007/s10441-020-09406-8
    Tuberculosis has continued to retain its title as "the captain among these men of death". This is evident as it is the leading cause of death globally from a single infectious agent. TB as it is fondly called has become a major threat to the achievement of the sustainable development goals (SDG) and hence require inputs from different research disciplines. This work presents a mathematical model of tuberculosis. A compartmental model of seven classes was used in the model formulation comprising of the susceptible S, vaccinated V, exposed E, undiagnosed infectious I1, diagnosed infectious I2, treated T and recovered R. The stability analysis of the model was established as well as the condition for the model to undergo backward bifurcation. With the existence of backward bifurcation, keeping the basic reproduction number less than unity [Formula: see text] is no more sufficient to keep TB out of the community. Hence, it is shown by the analysis that vaccination program, diagnosis and treatment helps to control the TB dynamics. In furtherance to that, it is shown that preference should be given to diagnosis over treatment as diagnosis precedes treatment. It is as well shown that at lower vaccination rate (0-20%), TB would still be endemic in the population. As such, high vaccination rate is required to send TB out of the community.
    Matched MeSH terms: Basic Reproduction Number
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links