Displaying publications 1 - 20 of 112 in total

Abstract:
Sort:
  1. Abd Gani SS, Basri M, Rahman MB, Kassim A, Abd Rahman RN, Salleh AB, et al.
    Biosci Biotechnol Biochem, 2010;74(6):1188-93.
    PMID: 20530909
    Formulations containing engkabang fat and engkabang fat esters, F10 and E15 respectively were prepared using a high-shear homogenizer, followed by a high-pressure homogenizer. Both formulations were stable at room temperature, at 45 degrees C, and after undergoing freeze-thaw cycles. The particle sizes of F10 and E15 after high pressure were 115.75 nm and 148.41 nm respectively. The zeta potentials of F10 and E15 were -36.4 mV and -48.8 mV respectively, while, the pH values of F10 and E15 were 5.59 and 5.81 respectively. The rheology of F10 and E15 showed thixotropy and pseudoplastic behavior respectively. There were no bacteria or fungal growths in the samples. The short-term moisturizing effect on 20 subjects analyzed by analysis of variance (ANOVA), gave p-values of 7.35 x 10(-12) and 2.77 x 10(-15) for F10 and E15 respectively. The hydration of the skins increased after application of F10 and E15 with p-value below 0.05.
    Matched MeSH terms: Rheology
  2. Abdul Azam F', Razak Z, Md Radzi MKF, Muhamad N, Che Haron CH, Sulong AB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933225 DOI: 10.3390/polym12092083
    The incorporation of kenaf fiber fillers into a polymer matrix has been pronounced in the past few decades. In this study, the effect of multiwalled carbon nanotubes (MWCNTs) with a short kenaf fiber (20 mesh) with polypropylene (PP) added was investigated. The melt blending process was performed using an internal mixer to produce polymer composites with different filler contents, while the suitability of this melt composite for the injection molding process was evaluated. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of the raw materials. Rheological analyses were conducted by varying the temperature, load factor, and filler content. The results demonstrate a non-Newtonian pseudoplastic behavior in all samples with changed kenaf fillers (10 to 40 wt %) and MWCNT contents (1 to 4 wt %), which confirm the suitability of the feedstock for the injection molding process. The addition of MWCNTs had an immense effect on the viscosity and an enormous reduction in the feedstock flow behavior. The main contribution of this work is the comprehensive observation of the rheological characteristics of newly produced short PP/kenaf composites that were altered after MWCNT additions. This study also presented an adverse effect on the composites containing MWCNTs, indicating a hydrophilic property with improved water absorption stability and the low flammability effect of PP/kenaf/MWCNT composites. This PP/kenaf/MWCNT green composite produced through the injection molding technique has great potential to be used as car components in the automotive industry.
    Matched MeSH terms: Rheology
  3. Abdul Hadi N, Marefati A, Matos M, Wiege B, Rayner M
    Carbohydr Polym, 2020 Jul 15;240:116264.
    PMID: 32475554 DOI: 10.1016/j.carbpol.2020.116264
    Acetylated, propionylated and butyrylated rice and quinoa starches at different levels of modification and starch concentrations, were used to stabilize oil-in-water starch Pickering emulsions at 10% oil fraction. Short-chain fatty acid modified starch Pickering emulsions (SPEs) were characterized after emulsification and after 50 days of storage. The particle size distribution, microstructure, emulsion index, and stability were evaluated. An increase in starch concentration led to a decrease of emulsion droplet sizes. Quinoa starch has shown the capability of stabilizing Pickering emulsions in both the native and modified forms. The emulsifying capacity of SPEs was improved by increasing the chain length of SCFA. Modified quinoa starch with higher chain lengths (i.e. propionylated and butyrylated), at higher levels of modification, showed higher emulsion index (>71%) and stability over the entire 50 days storage. At optimized formulation, SCFA-starch particles have the potential in stabilizing emulsions for functional foods, pharmaceutical formulations, or industrial food applications.
    Matched MeSH terms: Rheology
  4. Abdullah BM, Zubairi SI, Huri HZ, Hairunisa N, Yousif E, Basu RC
    PLoS One, 2016;11(3):e0151603.
    PMID: 27008312 DOI: 10.1371/journal.pone.0151603
    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
    Matched MeSH terms: Rheology*
  5. Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Basri M, Sattar MA, et al.
    Pak J Pharm Sci, 2013 Jan;26(1):75-83.
    PMID: 23261730
    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.
    Matched MeSH terms: Rheology
  6. Abdullah N, Chin NL, Yusof YA, Talib RA
    J Food Sci Technol, 2018 Mar;55(3):1207-1213.
    PMID: 29487464 DOI: 10.1007/s13197-017-3024-7
    The steady-state flow test was conducted on pink-fleshed guava, pink-fleshed pomelo and soursop juice concentrates using a rheometer to understand its rheological behaviour. The power law model was used and a master-curve was created using the shear rate-temperature-concentration superposition technique to predict rheological properties from a wide range of temperatures and concentrations. All three juice concentrates undergo a double horizontal shift whilst the pink-fleshed guava required an additional vertical shift. The final equations show shear-thinning behaviour of pink-fleshed guava, pink-fleshed pomelo and soursop with flow behaviour index of 0.2217, 0.7507 and 0.6347, respectively. The final master-curve predicts shear stress at wide range of shear rates, i.e. between 10-2 and 106 s-1 for the pink-fleshed guava, 100 and 106 s-1 for the pink-fleshed pomelo and 100 and 107 s-1 for the soursop. The results provide useful information and effective technique to predict fruit juice concentrates behaviour affected by heat changes during processing.
    Matched MeSH terms: Rheology
  7. Abu Zarim N, Zainul Abidin S, Ariffin F
    J Food Sci Technol, 2018 Nov;55(11):4522-4529.
    PMID: 30333649 DOI: 10.1007/s13197-018-3386-5
    Texture-modified food has become an important strategy in managing dysphagia. Pureed food is proven to be the safest texture due to its high viscosity which can slow down the rate of the food bolus during swallowing. In this study, texture-modified chicken rendang was developed according to Texture C (smooth puree) as described by the Australian standard for texture-modified food. Samples were added with five different thickeners (sago starch, tapioca starch, modified corn starch, xanthan gum and carboxymethyl cellulose gum) at three different concentrations (10, 20 and 30% w/w). Their rheological effects were analyzed through dynamic and steady shear test. Results obtained reveals that samples contained xanthan gum have higher structure rigidity and shear thinning behaviour, while carboxymethyl cellulose gum provides the highest viscosity as well as yield stress than other samples. In terms of concentration, a strong dependence of structural rigidity and viscosity of all prepared samples with amount of thickeners added was observed. Overall, based on its rheological properties, the addition of carboxymethyl cellulose gum at 30% concentration was found to be the most suitable thickener, to be incorporated in the texture-modified chicken rendang. Selecting a suitable food thickener in developing food for individual with dysphagia plays an important role to ensure the right texture and consistency for their safe consumption.
    Matched MeSH terms: Rheology
  8. Abubakar Z, Salema AA, Ani FN
    Bioresour Technol, 2013 Jan;128:578-85.
    PMID: 23211483 DOI: 10.1016/j.biortech.2012.10.084
    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.
    Matched MeSH terms: Rheology/instrumentation*
  9. Agi A, Junin R, Arsad A, Abbas A, Gbadamosi A, Azli NB, et al.
    PLoS One, 2019;14(9):e0220778.
    PMID: 31560699 DOI: 10.1371/journal.pone.0220778
    Ascorbic acid was used for the first time to synthesize cellulose nanoparticles (CNP) extracted from okra mucilage. The physical properties of the CNP including their size distribution, and crystalline structures were investigated. The rheological properties of the cellulose nanofluid (CNF) were compared with the bulk okra mucilage and commercial polymer xanthan. The interfacial properties of the CNF at the interface of oil-water (O/W) system were investigated at different concentrations and temperatures. The effects of the interaction between the electrolyte and ultrasonic were determined. Core flooding experiment was conducted at reservoir condition to justify the effect of the flow behaviour and disperse phase behaviour of CNF on additional oil recovery. The performance of the CNF was compared to conventional EOR chemical. The combined method of ultrasonic, weak-acid hydrolysis and nanoprecipitation were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm, increased yield of 51% and preserved crystallinity respectively. The zeta potential result shows that the CNF was stable, and the surface charge signifies long term stability of the fluid when injected into oil field reservoirs. The CNF, okra and xanthan exhibited shear-thinning and pseudoplastic behaviour. The IFT decreased with increase in concentration of CNF, electrolyte and temperature. The pressure drop data confirmed the stability of CNF at 120°C and the formation of oil bank was enough to increase the oil recovery by 20%. CNF was found to be very effective in mobilizing residual oil at high-temperature high-pressure (HTHP) reservoir condition. The energy and cost estimations have shown that investing in ultrasonic-assisted weak-acid hydrolysis is easier, cost-effective, and can reduce energy consumption making the method economically advantageous compared to conventional methods.
    Matched MeSH terms: Rheology*
  10. Ahmad K, Win T, Jaffri JM, Edueng K, Taher M
    AAPS PharmSciTech, 2018 Jan;19(1):371-383.
    PMID: 28744617 DOI: 10.1208/s12249-017-0843-9
    This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
    Matched MeSH terms: Rheology
  11. Ahmad M, Uzir Wahit M, Abdul Kadir MR, Mohd Dahlan KZ
    ScientificWorldJournal, 2012;2012:474851.
    PMID: 22666129 DOI: 10.1100/2012/474851
    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.
    Matched MeSH terms: Rheology*
  12. Ahmad M, Roy RA, Kamarudin AG
    Endod Dent Traumatol, 1992 Oct;8(5):189-94.
    PMID: 1302678
    The steady acoustic streaming generated around straight and precurved oscillating ultrasonic files driven by the Piezon-Master 400 unit was examined in the free field and in small channels using a stereomicroscope. In addition, the effect of file-wall contact on streaming production was also investigated. The results indicated that the ultrasonic files can generate acoustic streaming both in the free field and in the small channel. Higher velocity streaming was observed when smaller size files were employed and when the file was precurved. Light file-wall contact did not totally inhibit streaming while severe file-wall contact inhibited movement of the file and, as a result, no streaming was observed. The positions and length scales of the streaming vortices appeared to be influenced by the presence of boundaries. In the free field, two rows of vortices were situated along the sides of the file while in the small channel, the vortices were positioned above the surface of the file. These results indicated that it is possible for acoustic streaming to occur in a confined space as in a root canal provided that severe file-wall contact is avoided. It is therefore recommended that light filing or allowing the file to freely vibrate during some stage of treatment should be carried out in order to generate streaming in the root canal.
    Matched MeSH terms: Rheology
  13. Ahmad U, Sohail M, Ahmad M, Minhas MU, Khan S, Hussain Z, et al.
    Int J Biol Macromol, 2019 May 15;129:233-245.
    PMID: 30738157 DOI: 10.1016/j.ijbiomac.2019.02.031
    Oral drug delivery is natural, most acceptable and desirable route for nearly all drugs, but many drugs like NSAIDs when delivered by this route cause gastrointestinal irritation, gastric bleeding, ulcers, and many undesirable effects which limits their usage by oral delivery. Moreover, it is almost impossible to control the release of a drug in a targeted location in body. We developed thermo-responsive chitosan-co-poly(N-isopropyl-acrylamide) injectable hydrogel as an alternative for the gastro-protective and controlled delivery of loxoprofen sodium as a model drug. A free radical polymerization technique was used to synthesize thermo-responsive hydrogel by cross-linking chitosan HCl with NIPAAM using glutaraldehyde as cross-linker. Confirmation of crosslinked hydrogel structure was done by Fourier transform infrared spectra (FTIR). The thermal stability of hydrogel was confirmed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The scanning electron microscopy (SEM) was performed to evaluate the structural morphology of cross-linked hydrogel. To evaluate the rheological behavior of hydrogel with increasing temperature, rheological study was performed. Swelling and in vitro drug release studies were carried out under various temperature and pH conditions. The swelling study revealed that maximum swelling was observed at low pH (pH 1.2) and low temperature (25 °C) compared to the high range of pH and temperature and it resulted in quick release of the drug. The high range of pH (7.4) and temperature (37 °C) however caused controlled release of the drug. The in vivo evaluation of the developed hydrogel in rabbits demonstrated the controlled release behavior of fabricated system.
    Matched MeSH terms: Rheology
  14. Ahmad Zakuan Ahmad Azmi, Mohd. Saaid, Irawan, Sonny
    MyJurnal
    The present project investigated the potential of utilizing corncobs and sugar cane waste as viscosivier in drilling fluid. For this purpose, the synthetic-based drilling fluid, Sarapar 147, was used as the base fluid. Both the materials were subjected to pre-treatment of drying, dehumidifying, grinding and sieving process prior to rheological tests. The rheological tests were conducted in accordance with the API 13B specifications to measure mud density, plastic viscosity, yield point, 10-second and 10-minute gel strength. The study found that plastic viscosity and yield point had a direct relationship with the amount of materials added. To drill fluid additive with corn cobs, the density, plastic viscosity and yield point were increased when the amount of additives were increased. Based on these experiments, both additives were found to have the potential to be used as additive in drilling fluid. In particular, they were able to improve its rheological properties by increasing the density, plastic viscosity and yield point. The suitable concentration for the corn cobs and sugar cane is 6.45 lb/bbl and 9.43 lb/bbl, respectively.
    Matched MeSH terms: Rheology
  15. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
    Matched MeSH terms: Rheology
  16. Akbari S, Mahmood SM, Tan IM, Ghaedi H, Ling OL
    Polymers (Basel), 2017 Nov 27;9(12).
    PMID: 30965947 DOI: 10.3390/polym9120647
    This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide) with AMPS (2-Acrylamido-2-Methylpropane Sulfonate). AN132 VHM has a molecular weight of 9⁻11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9⁻11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature) type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100⁻4500 ppm) with NaCl (0.1⁻10 wt %) measured at 25 °C. The effect of hardness was investigated by preparing a CaCl₂-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR) application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.
    Matched MeSH terms: Rheology
  17. Al-Atabi M, Chin SB, Luo XY
    J Biomech Eng, 2010 Apr;132(4):041003.
    PMID: 20387966 DOI: 10.1115/1.4001043
    Three-dimensional scaled-up transparent models of three human cystic ducts were prepared on the basis of anatomical specimens. The measurement of pressure drop across the cystic duct models and visualization of the flow structures within these ducts were performed at conditions replicating the physiological state. The flow visualization study confirmed the laminar nature of the flow of bile inside the cystic duct and values of pressure drop coefficient (Cp) decreased as the Reynolds number (Re) increased. The three tested models showed comparable behavior for the curve of Reynolds number versus the pressure drop coefficient. The results show that the tested cystic ducts have both increased pressure drop and complicated flow structures when compared with straight conduits. High resistance in a cystic duct may indicate that the gallbladder has to exert large force in expelling bile to the cystic duct. For patients with diseased gallbladder, and even in healthy persons, gallbladder is known to stiffen with age and it may lose its compliance or flexibility. A high resistance cystic duct coupled with a stiffened gallbladder may result in prolonged stasis of bile in the gallbladder, which is assumed to encourage the formation of gallstones.
    Matched MeSH terms: Rheology/methods
  18. Ali F, Khan I, Shafie S
    PLoS One, 2014;9(2):e85099.
    PMID: 24551033 DOI: 10.1371/journal.pone.0085099
    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.
    Matched MeSH terms: Rheology
  19. Amid BT, Mirhosseini H
    Carbohydr Polym, 2012 Sep 1;90(1):452-61.
    PMID: 24751065 DOI: 10.1016/j.carbpol.2012.05.065
    The aim of the present study was to investigate the effects of different purification and drying methods on the viscoelastic behaviour and rheological properties of durian seed gum. The results indicated that the purified gum A (using isopropanol and ethanol) and D (using hydrochloric acid and ethanol) showed the highest and lowest viscosity, respectively. Four drying techniques included oven drying (105 °C), freeze drying, spray drying and vacuum oven drying. In the present work, all purified gums exhibited more elastic (gel-like) behaviour than the viscous (liquid-like) behaviour (G″
    Matched MeSH terms: Rheology/methods*
  20. Amid BT, Mirhosseini H
    Colloids Surf B Biointerfaces, 2013 Mar 1;103:430-40.
    PMID: 23261563 DOI: 10.1016/j.colsurfb.2012.11.015
    The main objective of the current work was to characterize the shear rheological flow behaviour and emulsifying properties of the natural biopolymer from durian seed. The present study revealed that the extraction condition significantly affected the physical and functional characteristics of the natural biopolymer from durian seed. The dynamic oscillatory test indicated that the biopolymer from durian seed showed more gel (or solid) like behaviour than the viscous (or liquid) like behaviour (G'>G″) at a relatively high concentration (20%) in the fixed frequency (0.1 Hz). This might be explained by the fact that the gum coils disentangle at low frequencies during the long period of oscillation, thus resulting in more gel like behaviour than the viscous like behaviour. The average droplet size of oil in water (O/W) emulsions stabilized by durian seed gum significantly varied from 0.42 to 7.48 μm. The results indicated that O/W emulsions showed significant different stability after 4 months storage. This might be interpreted by the considerable effect of the extraction condition on the chemical and molecular structure of the biopolymer, thus affecting its emulsifying capacity. The biopolymer extracted by using low water to seed (W/S) ratio at the low temperature under the alkaline condition showed a relatively high emulsifying activity in O/W emulsion.
    Matched MeSH terms: Rheology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links