Displaying publications 1 - 20 of 115 in total

Abstract:
Sort:
  1. Zargar M, Ahmadinia E, Asli H, Karim MR
    J Hazard Mater, 2012 Sep 30;233-234:254-8.
    PMID: 22818590 DOI: 10.1016/j.jhazmat.2012.06.021
    The ageing of the bitumen during storage, mixing, transport and laying on the road, as well as in service life, are the most important problems presented by the use of bitumen in pavements. This paper investigates the possibility of using waste cooking oil (WCO), which is a waste material that pollutes landfills and rivers, as an alternative natural rejuvenating agent for aged bitumen to a condition that resembles the original bitumen. With this target, the physical and chemical properties of the original bitumen, aged bitumen and rejuvenated bitumen were measured and compared by the bitumen binder tests - softening point, penetration, Brookfield viscosity, dynamic shear rheometer and Fourier transform infrared spectroscopy. In addition, the behaviour of the WCO rejuvenated bitumen is investigated and compared with virgin bitumen after using the rolling thin film oven ageing process. In general, the results showed that using 3-4% of WCO the aged bitumen group 40/50 was rejuvenated to a condition that closely resembled the physical, rheological properties of the original bitumen (80/100), however, there was a difference in the tendency to ageing between the WCO rejuvenated bitumen and the virgin bitumen during mixing, transport and laying on the road.
    Matched MeSH terms: Rheology
  2. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2019 Oct 31;9(11).
    PMID: 31683602 DOI: 10.3390/nano9111547
    Herein, hybrid k-carrageenan bio-nanocomposite films were fabricated by using two types of nanofillers, organically modified montmorillonite (OMMT), and cellulose nanocrystals (CNCs). Hybrid bio-nanocomposite films were made by casting techniques employing 4 wt% of CNCs, OMMT, and hybridized CNCs/OMMT in a 1:1 ratio. The rheological and morphological properties and thermal stability of all composites were investigated using rotational rheometry, thermogravimetry analysis, differential scanning calorimetry, field emission scanning electron microscopy, and transmission electron microscopy (TEM). The results showed that the hybrid CNC/OMMT bio-nanocomposite exhibited significantly improved properties as compared to those for the bio-nanocomposites with single fillers due to the nanosize and homogenous nanofiller dispersion in the matrix. Rheological analysis of the hybrid bio-nanocomposite showed higher dynamic shear storage modulus and complex viscosity values when compared to those for the bio-nanocomposite with individual fillers. The TEM analysis of the hybridized CNC/OMMT bio-nanocomposite revealed that more particles were packed together in the CNC network, which restricted the matrix mobility. The heat resistance and thermal stability bio-nanocomposite k-carrageenan film enhanced rapidly with the addition of hybridized CNCs/OMMT to 275 °C. The hybridized CNCs/OMMT exhibited synergistic effects due to the good affinity through interfacial interactions, resulting in the improvement of the material properties.
    Matched MeSH terms: Rheology
  3. Zaini HBM, Sintang MDB, Pindi W
    Food Sci Nutr, 2020 Oct;8(10):5497-5507.
    PMID: 33133552 DOI: 10.1002/fsn3.1847
    Chicken sausages included with three different quantities of banana (Musa balbisiana) peel powder. The technological properties (cooking yield, texture, water-holding capacity, color, rheology, and texture), composition, and sensory acceptability were assessed. In storage study, lipid oxidation of the best formulation from the sensory score was evaluated. The inclusion of banana peel powder (BPP) raises the nutritional value with regard to an increase in dietary fiber and a reduction in the sausage fat content. The addition of BPP also causes a significant increase in the cooking yield and water-holding capacity. Additionally, storage modulus values increase with the increase in the BPP's concentration. However, with BPP incorporation, a hard texture and darkening of the sausage were observed. Interestingly, our findings exhibit the compromise in microstructural of chicken sausage with high percentage of BPP manifested by the high storage modulus and hardness but with low resistance toward stress, short linear viscoelastic region. This aspect also caused a significant change in the sensory score. The TBA value in the sausage containing 2% BPP exhibited a delay in lipid oxidation up to 55%, prompting its antioxidant potential. Generally, the incorporation of BPP to chicken sausage changes its properties. BPP has been a potential candidate as a value-adding ingredient that may be used during meat preparation since it positively influences the nutritional value and specific technological properties of the food.
    Matched MeSH terms: Rheology
  4. Yunus NA, Mazlan SA, Ubaidillah, Abdul Aziz SA, Tan Shilan S, Abdul Wahab NA
    Int J Mol Sci, 2019 Feb 10;20(3).
    PMID: 30744210 DOI: 10.3390/ijms20030746
    Determination of the thermal characteristics and temperature-dependent rheological properties of the magnetorheological elastomers (MREs) is of paramount importance particularly with regards to MRE applications. Hitherto, a paucity of temperature dependent analysis has been conducted by MRE researchers. In this study, an investigation on the thermal and rheological properties of epoxidized natural rubber (ENR)-based MREs was performed. Various percentages of carbonyl iron particles (CIPs) were blended with the ENR compound using a two roll-mill for the preparation of the ENR-based MRE samples. The morphological, elemental, and thermal analyses were performed before the rheological test. Several characterizations, as well as the effects of the strain amplitude, temperature, and magnetic field on the rheological properties of ENR-based MRE samples, were evaluated. The micrographs and elemental results were well-correlated regarding the CIP and Fe contents, and a uniform distribution of CIPs was achieved. The results of the thermal test indicated that the incorporation of CIPs enhanced the thermal stability of the ENR-based MREs. Based on the rheological analysis, the storage modulus and loss factor were dependent on the CIP content and strain amplitude. The effect of temperature on the rheological properties revealed that the stiffness of the ENR-based MREs was considered stable, and they were appropriate to be employed in the MRE devices exposed to high temperatures above 45 °C.
    Matched MeSH terms: Rheology*
  5. Wan Mohtar WH, ElShafie A
    ScientificWorldJournal, 2014;2014:683537.
    PMID: 25250384 DOI: 10.1155/2014/683537
    Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re(l) ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re(l) < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re(l) ≥ 117. At low Re(l) < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈ 1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re(l) obeys the standard profile was found to be within the range 114 ≤ Re(l) ≤ 116.
    Matched MeSH terms: Rheology/instrumentation; Rheology/methods*
  6. Vardar E, Larsson HM, Allazetta S, Engelhardt EM, Pinnagoda K, Vythilingam G, et al.
    Acta Biomater, 2018 02;67:156-166.
    PMID: 29197579 DOI: 10.1016/j.actbio.2017.11.034
    Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α2PI1-8-MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences.

    STATEMENT OF SIGNIFICANCE: Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1). These bioactive fibrin micro-beads induced human smooth muscle cell migration in vitro. Thus, this injectable bulking agent is apt to be a good candidate for regeneration of urethral sphincter muscle, ensuring a long-lasting treatment for urinary incontinence.

    Matched MeSH terms: Rheology
  7. Van Wassenbergh S, Joris I, Desclée M, Liew HJ, De Boeck G, Adriaens D, et al.
    J Exp Biol, 2016 05 15;219(Pt 10):1535-41.
    PMID: 27207955 DOI: 10.1242/jeb.131631
    Many species from several different families of fishes perform mouthbrooding, where one of the sexes protects and ventilates the eggs inside the mouth cavity. This ventilation behaviour differs from gill ventilation outside the brooding period, as the normal, small-amplitude suction-pump respiration cycles are alternated with actions including near-simultaneous closed-mouth protrusions and high-amplitude depressions of the hyoid. The latter is called churning, referring to its hypothetical function in moving around and repositioning the eggs by a presumed hydrodynamic effect of the marked shifts in volume along the mouth cavity. We tested the hypothesis that churning causes the eggs located posteriorly in the mouth cavity to move anteriorly away from the gill entrance. This would prevent or clear accumulations of brood at the branchial basket, which would otherwise hinder breathing by the parent. Dual-view videos of female Nile tilapias (Oreochromis niloticus) during mouthbrooding showed that churning involves a posterior-to-anterior wave of expansion and compression of the head volume. Flow visualisation with polyethylene microspheres revealed a significant inflow of water entering the gill slits at the zone above the pectoral fin base, followed by a predominantly ventral outflow passing the ventrolaterally flapping branchiostegal membranes. X-ray videos indicated that particularly the brood located close to the gills is moved anteriorly during churning. These data suggest that, in addition to mixing of the brood to aid its oxygenation, an important function of the anterior flow through the gills and buccal cavity during churning is to prevent clogging of the eggs near the gills.
    Matched MeSH terms: Rheology
  8. Utami D, Ubaidillah, Mazlan SA, Imaduddin F, Nordin NA, Bahiuddin I, et al.
    Materials (Basel), 2018 Nov 06;11(11).
    PMID: 30404193 DOI: 10.3390/ma11112195
    This paper investigates the field-dependent rheological properties of magnetorheological (MR) fluid used to fill in MR dampers after long-term cyclic operation. For testing purposes, a meandering MR valve was customized to create a double-ended MR damper in which MR fluid flowed inside the valve due to the magnetic flux density. The test was conducted for 170,000 cycles using a fatigue dynamic testing machine which has 20 mm of stroke length and 0.4 Hz of frequency. Firstly, the damping force was investigated as the number of operating cycles increased. Secondly, the change in viscosity of the MR fluid was identified as in-use thickening (IUT). Finally, the morphological observation of MR particles was undertaken before and after the long-term operation. From these tests, it was demonstrated that the damping force increased as the number of operating cycles increases, both when the damper is turn on (on-state) and off (off-state). It is also observed that the particle size and shape changed due to the long operation, showing irregular particles.
    Matched MeSH terms: Rheology
  9. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2012;7(11):e49499.
    PMID: 23166688 DOI: 10.1371/journal.pone.0049499
    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
    Matched MeSH terms: Rheology*
  10. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2015;10(5):e0122663.
    PMID: 25933066 DOI: 10.1371/journal.pone.0122663
    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
    Matched MeSH terms: Rheology*
  11. Toulah FH, El-Aswad BEW, Harba NM, Naguib YM
    Trop Biomed, 2018 Dec 01;35(4):893-907.
    PMID: 33601839
    High-fat diet (HFD) can cause hyperlipidemia, fatty liver and cardiovascular disorders. Herein, we evaluated therapeutic effects and possible underlying mechanisms of actions of Schistosoma mansoni soluble egg antigen (SEA) against experimental HFD induced dyslipidemia, hepatic and cardiovascular pathology. Forty Swiss albino mice were divided into four groups (10 each); mice fed standard diet (SD), mice fed HFD, mice fed HFD for 8 weeks then infected by S. mansoni cercaria (HFD+I) and mice fed HFD for 8 weeks then treated with SEA (HFD+SEA), all mice were euthanized 16 weeks after starting the experiment. HFD+SEA mice showed significantly (p<0.001) reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), and significantly (p<0.05) increased high-density lipoprotein cholesterol (HDL-C) comparing to HFD mice with non-significant difference with HFD+I mice group. Doppler flowmetry showed significantly (p<0.01) lower arterial resistance and significantly (p<0.05) higher blood flow velocity in HFD+SEA and HFD+I mice groups than HFD mice. HFD+SEA mice revealed improving in liver and aortic pathology and these were better than HFD+I mice group. HFD+SEA and HFD+I mice groups had less myocardium lipid deposits, but still showing some congested blood vessels. HFD myocardium revealed strong CD34+ expression on immunohistochemistry study, while that of HFD+SEA showed weak and HFD+I mice had moderate expressions. HFD+SEA mice had significantly (p<0.01) lower serum IL-1β and vascular endothelial growth factor (VEGF) and significantly (p<0.001) higher serum transforming growth factor beta 1 (TGF-β1) and IL-10 than HFD mice with non-significant difference with HFD+I mice. In conclusion, SEA lowered serum lipids, improved aortic function, decreased liver and cardiovascular pathology in HFD mice, so, it is recommended to purify active molecules from SEA to develop anti-dyslipidemic treatment.
    Matched MeSH terms: Rheology
  12. Tijani HI, Abdullah N, Yuzir A, Ujang Z
    Bioresour Technol, 2015 Jun;186:276-85.
    PMID: 25836036 DOI: 10.1016/j.biortech.2015.02.107
    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area.
    Matched MeSH terms: Rheology
  13. Thu HE, Zulfakar MH, Ng SF
    Int J Pharm, 2012 Sep 15;434(1-2):375-83.
    PMID: 22643226 DOI: 10.1016/j.ijpharm.2012.05.044
    The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.
    Matched MeSH terms: Rheology
  14. Tee HC, Lim PE, Seng CE, Nawi MA
    Bioresour Technol, 2012 Jan;104:235-42.
    PMID: 22130081 DOI: 10.1016/j.biortech.2011.11.032
    The objectives of this study are to compare the performance of newly developed baffled and conventional horizontal subsurface-flow (HSF) constructed wetlands in the removal of nitrogen at the hydraulic retention times (HRT) of 2, 3 and 5 days and to evaluate the potential of rice husk as wetland media for wastewater treatment. The results show that the planted baffled unit achieved 74%, 84% and 99% ammonia nitrogen (NH(4)(+)-N) removal versus 55%, 70% and 96% for the conventional unit at HRT of 2, 3 and 5 days, respectively. The better performance of the baffled unit was explained by the longer pathway due to the up-flow and down-flow conditions sequentially thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones. Near complete total oxidized nitrogen was observed due to the use of rice husk as wetland media which provided the COD as the electron donor in the denitrification process.
    Matched MeSH terms: Rheology/instrumentation; Rheology/methods
  15. Tan YT, Peh KK, Al-Hanbali O
    AAPS PharmSciTech, 2000;1(3):E24.
    PMID: 14727910
    This study examined the mechanical (hardness, compressibility, adhesiveness, and cohesiveness) and rheological (zero-rate viscosity and thixotropy) properties of polyethylene glycol (PEG) gels that contain different ratios of Carbopol 934P (CP) and polyvinylpyrrolidone K90 (PVP). Mechanical properties were examined using a texture analyzer (TA-XT2), and rheological properties were examined using a rheometer (Rheomat 115A). In addition, lidocaine release from gels was evaluated using a release apparatus simulating the buccal condition. The results indicated that an increase in CP concentration significantly increased gel compressibility, hardness, and adhesiveness, factors that affect ease of gel removal from container, ease of gel application onto mucosal membrane, and gel bioadhesion. However, CP concentration was negatively correlated with gel cohesiveness, a factor representing structural reformation. In contrast, PVP concentration was negatively correlated with gel hardness and compressibility, but positively correlated with gel cohesiveness. All PEG gels exhibited pseudoplastic flow with thixotropy, indicating a general loss of consistency with increased shearing stress. Drug release T50% was affected by the flow rate of the simulated saliva solution. A reduction in the flow rate caused a slower drug release and hence a higher T50% value. In addition, drug release was significantly reduced as the concentrations of CP and PVP increased because of the increase in zero-rate viscosity of the gels. Response surfaces and contour plots of the dependent variables further substantiated that various combinations of CP and PVP in the PEG gels offered a wide range of mechanical, rheological, and drug-release characteristics. A combination of CP and PVP with complementary physical properties resulted in a prolonged buccal drug delivery.
    Matched MeSH terms: Rheology/methods*
  16. Tan KH, Cham HY, Awala H, Ling TC, Mukti RR, Wong KL, et al.
    Nanoscale Res Lett, 2015 Dec;10(1):956.
    PMID: 26058517 DOI: 10.1186/s11671-015-0956-6
    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li(+), Na(+), K(+), Ca(2+)) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, (1)H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.
    Matched MeSH terms: Rheology
  17. Syed FNN, Zakaria MH, Bujang JS, Christianus A
    Int J Food Sci, 2021;2021:8825970.
    PMID: 33553420 DOI: 10.1155/2021/8825970
    Several aquatic macrophytes such as Colocasia esculenta, Eleocharis dulcis, Nelumbo nucifera, Sagittaria sagittifolia, Trapa bispinosa, and Typha angustifolia possessed carbohydrate mainly in their storage and reproductive parts. Starch morphology, total starch, and amylose content of these six freshwater plant species were determined. Their functional properties, i.e., starch crystallinity, thermal properties, and rheological behaviour were assessed. Large starch granules were in N. nucifera rhizome (>15 μm), medium-sized was N. nucifera seed (8-18 μm), while the rest of the starches were small starch granules (<8 μm). Shapes of the starch granules varied from oval and irregular with centric hilum to elongated granules with the eccentric hilum. Eleocharis dulcis corm starch had significantly higher total starch content (90.87%), followed by corms of C. esculenta (82.35%) and S. sagittifolia (71.71%). Nelumbo nucifera seed starch had significantly higher amylose content (71.45%), followed by T. angustifolia pollen (36.47%). In comparison, the waxy starch was in N. nucifera rhizome (7.63%), T. bispinosa seed (8.83%), C. esculenta corm (10.61%), and T. angustifolia rhizome (13.51%). Higher resistant starch was observed mostly in rhizomes of N. nucifera (39.34%)>T. angustifolia (37.19%) and corm parts of E. dulcis (37.41%)>S. sagittifolia (35.09%) compared to seed and pollen starches. The XRD profiles of macrophytes starches displayed in all the corms and N. nucifera seed had A-type crystallinity. The T. bispinosa seed had CA-type, whereas the rest of the starches exhibited CB-type crystallinity. Waxy starches of C. esculenta corm had higher relative crystallinity (36.91%) and viscosity (46.2 mPa s) than regular starches. Based on thermal properties, high-amylose of N. nucifera seed and T. angustifolia pollen resulted in higher gelatinization enthalpy (19.93 and 18.66 J g-1, respectively). Starch properties showed equally good potential as commercial starches in starch-based food production based on their starch properties and functionality.
    Matched MeSH terms: Rheology
  18. Syafiq, A., Amir, I.Z., Sharon, W.X.R.
    MyJurnal
    The impacts on both rheological parameters; Casson yield stress and Casson viscosity were determined. The interactions among blend’s components; xanthan gum (XG), corn starch (CS), glycerin (GL) and their relationship with both flow parameters were also investigated by using D-Optimal mixture design. Three levels of cocoa butter substitution assigned in chocolate production were at 5%, 10% and 15% level with random proportions of each component generated by Design Expert software. An appropriate mathematical model was applied to evaluate each response as a function of the proportions of the components enabling in prediction of future response by using any blend of components. As the incorporation of the blends (XG/CS/GL) in chocolate production was elevated from 5% to 15%, both parameters; viscosity and yield stress of chocolate were gradually increased, as in range 7.819 to 10.529 Pa, and 2.372 to 3.727 Pa.s, respectively. Neither binary nor ternary component-component interaction exhibited synergistic effect. Nevertheless, strongest antagonistic effect on both rheological parameters of substituted chocolate at 5% level and 10% level were respectively observed at ternary interaction region for the former, and at binary interaction area of CS:GL, closer to CS corner as for the latter. This study somehow provides ideas on how component-component interactions influence experimented response.
    Matched MeSH terms: Rheology
  19. Sopyan I, Fadli A, Mel M
    J Mech Behav Biomed Mater, 2012 Apr;8:86-98.
    PMID: 22402156 DOI: 10.1016/j.jmbbm.2011.10.012
    This report presents physical characterization and cell culture test of porous alumina-hydroxyapatite (HA) composites fabricated through protein foaming-consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200-1550 °C for 2 h. Porous alumina-HA bodies with 26-77 vol.% shrinkage, 46%-52% porosity and 0.1-6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol-gel derived HA. Biocompatibility study of porous alumina-HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8-120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h(-1) and increased to 0.019 h(-1) for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h(-1) for 1.0 w/w ratio.
    Matched MeSH terms: Rheology
  20. Sirajuddin N, Md Jamil M
    Sains Malaysiana, 2015;44:811-818.
    Synthetic materials that are capable of healing upon damage are being developed at a rapid pace because of their
    many potential applications. Here, new healing chemically cross-linked hydrogel of poly(2-hydroxyethyl methacrylate)
    (pHEMA) was prepared. The healing hydrogel was achieved by heating above its glass transition (Tg
    ). The intermolecular
    diffusion of dangling chain and the chain slippage led to healing of the gel. The peaks in attenuated total reflectance
    (ATR) confirmed that hydrogel was formed while rheological studies had determined the minimum for healing temperature
    is 48.5o
    C. The results showed that ratio stress of the healable hydrogel can reach until 92 and 91% of first and second
    healing cycle, respectively. The morphology of the sample was carried out to evaluate the self-property of hydrogel.
    Matched MeSH terms: Rheology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links