Displaying publications 1 - 20 of 508 in total

Abstract:
Sort:
  1. Alih RA, Solomon SG, Olufeagba SO, Cheikyula JO, Abol-Munafi AB, Okomoda VT
    Zygote, 2022 Feb;30(1):125-131.
    PMID: 34176523 DOI: 10.1017/S0967199421000411
    The study sought to investigate the chronology of events and timing of embryogenesis, as well as breeding performances of three strains of Heterobranchus longifilis from Nigeria. Fish samples were collected from Benue River in Makurdi, Niger River in Onitsha, and Rima River in Sokoto for this study. Induced spawning of the strains was carried out so that egg development could be tracked from fertilization to hatching using a simple microscope. The microphotographs obtained showed that the embryogenesis of the strains followed a similar pattern to those of other members of the family Clariidae, however with changes occurring in the specific timing of the sequences of events (i.e. interstrain and interspecies differences). When the different strains were compared, the study noted similarities (P > 0.05) in the overall breeding performance (except for fertilization rate), survival at different stages of development, timing of embryogenesis, and larvae characteristics. The outcomes of this study, therefore, provide baseline information on what genetic improvement of the species through strain crossing can be attempted in future studies.
    Matched MeSH terms: Rivers
  2. Deein G, Tangjitjaroen W, Page LM
    Zootaxa, 2014;3779:341-52.
    PMID: 24871728 DOI: 10.11646/zootaxa.3779.3.2
    Lepidocephalus has been assumed to include only two species and confined to peninsular Malaysia and Indonesia. However, based on records and collections reported herein, the genus contains five species and is most common in the Chao Phraya basin of Thailand. Large rivers seem to be the preferred habitat, and difficulty in collecting these rivers may account for the paucity of specimens in collections. The known range of these five species includes western and southern Borneo, Java, Sumatra, peninsular Malaysia, and central Thailand.
    Matched MeSH terms: Rivers
  3. Khaironizam MZ, Akaria-Ismail M, Armbruster JW
    Zootaxa, 2015;3962(1):139-57.
    PMID: 26249381 DOI: 10.11646/zootaxa.3962.1.7
    Meristic, morphometric and distributional patterns of cyprinid fishes of the genus Neolissochilus found in Peninsular Malaysia are presented. Based on the current concept of Neolissochilus, only two species are present: N. soroides and N. hendersoni. Neolissochilus hendersoni differs from N. soroides by having lower scale and gill raker counts. Neolissochilus soroides has three mouth types (normal with a rounded snout, snout with a truncate edge, and lobe with a comparatively thick lower lip). A PCA of log-transformed measurements did not reveal significant differences between N. hendersoni and N. soroides, or between any of the morphotypes of N. soroides; however, a CVA of log-transformed measurements successfully classified 87.1% of all specimens. Removing body size by running a CVA on all of the principal components except PC1 (which was correlated with length) only slightly decreased the successful classification rate to 86.1%. Differences in morphometrics were as great between the three morphotypes of N. soroides as between any of the morphotypes and N. hendersoni suggesting that the morphotypes should be examined in greater detail with genetic tools. The PCA of morphometrics revealed separate clouds for N. hendersoni and N. soroides, but no differences between the N. soroides morphotypes. This study revealed that N. hendersoni is recorded for the first time in the mainland area of Peninsular Malaysia. Other nominal species of Neolissochilus reported to occur in the river systems of Peninsular Malaysia are discussed. Lissochilus tweediei Herre in Herre & Myers 1937 and Tor soro Bishop 1973 are synonyms of Neolissochilus soroides.
    Matched MeSH terms: Rivers
  4. Kamal NSS, Tan HH, Ng CKC
    Zootaxa, 2020 Jul 22;4819(1):zootaxa.4819.1.11.
    PMID: 33055678 DOI: 10.11646/zootaxa.4819.1.11
    Betta nuluhon, new species, is described from a hill stream habitat in western Sabah. This species is allied to both B. chini and B. balunga, and differs from rest of its congeners in the B. akarensis group in having the following combination of characters: yellow iris when live; mature males with greenish-blue iridescence on opercle when live; mature fish with distinct transverse bars on caudal fin; slender body (body depth 22.1-25.2 % SL); belly area with faint reticulate pattern (scales posteriorly rimmed with black); absence of tiny black spots on anal fin; lateral scales 29-31 (mode 30); predorsal scales 20-21 (mode 20). Notes on a fresh series of B. chini are also provided.
    Matched MeSH terms: Rivers
  5. Dow RA, Choong CY, Ng YF
    Zootaxa, 2018 Apr 23;4413(2):351-367.
    PMID: 29690113 DOI: 10.11646/zootaxa.4413.2.7
    Coeliccia erici Laidlaw, 1917 is re-described and illustrated for both sexes; its taxonomic history and the confusion surrounding it is discussed. Coeliccia kimurai Asahina, 1990 is shown to be a junior synonym of C. erici. Coelicca sameerae sp. nov. (holotype ♂, small stream near Sungai Lasir, Tasik Kenyir, Terengganu, Malaysia, deposited in the Natural History Museum, London) is described from both sexes from Peninsular Malaysia; this species had been confused with C. erici until now. A remark on the status of Coeliccia simillima Laidlaw, 1917 is made.
    Matched MeSH terms: Rivers
  6. Grismer LL, Wood PLJ, Ahmad AB, Baizul-Hafsyam BS, Afiq-Shuhaimi M, Rizal SA, et al.
    Zootaxa, 2018 May 29;4425(1):87-107.
    PMID: 30313468 DOI: 10.11646/zootaxa.4425.1.5
    Two new species of diminutive, sympatric, lowland, leaf-litter skinks of the genus Tytthoscincus Linkem, Diesmos Brown from the Sekayu region of Hulu Terengganu, Terengganu State in northeastern Peninsular Malaysia are described on the basis genetic and morphological data. One of the new species, T. monticolus sp. nov., was collected in a hilly riparian area along Sungai (=river) Bubu and is most closely related to an undescribed species from the Tembak Reservoir area. The other, T. keciktuek sp. nov. collected along Sungai Peres, is most closely related to T. perhentianensis Grismer, Wood, Grismer from Pulau (=island) Perhentian Besar. Sympatry and syntopy of multiple, specialized, unrelated, leaf-litter species of Tytthoscincus was previously only known from upland areas and these new species represent the first example of lowland of sympatry. More importantly, however, these endemic species add to a growing body of research and discoveries that continue to underscore the unrealized biodiversity of the riparian systems of Hulu Terengganu and the Sekayu region and their need for protection and continued study.
    Matched MeSH terms: Rivers
  7. Kano Y, Miyazaki Y, Tomiyama Y, Mitsuyuki C, Nishida S, Rashid ZA
    Zoolog Sci, 2013 Mar;30(3):178-84.
    PMID: 23480377 DOI: 10.2108/zsj.30.178
    Mesohabitat selection in fluvial fishes was studied in a small tropical stream of the Malay Peninsula. A total of 681 individuals representing 24 species were sampled at 45 stations within heterogeneous stream (ca. 1 km in length), in which water depth, water velocity, substrate size, and riparian canopy cover were measured as environmental variables. A canonical correspondence analysis (CCA) yielded a diagram that shows a specific mesohabitat selection of the fish assemblage, in which the species were plotted widely on the CCA1-CCA2 biplot. Generalized linear model also revealed a significant pattern of the mesohabitat selection of several species. Water velocity and substrate size mainly separated on CCA1, indicating variation of pool (deep, slow-flow section) and riffle (shallow, fast-flow section) structures is a primary factor of mesohabitat selection in the fluvial fish assemblage. The mean body weight of species significantly correlated with CCA1; larger species tended to inhabit pools, while small ones occupied riffles. The riparian canopy cover separated on CCA2. The trophic level of species significantly correlated with CCA2; herbivorous species (low trophic level) selected open sites without riparian cover, whereas omnivorous/carnivorous (middle-high trophic level) species preferred highly covered sites. In conclusion, our results suggest that mesohabitat selection is closely related to the species feeding habit, which is consistent with the results of previous studies.
    Matched MeSH terms: Rivers*
  8. Martin MB, Chakona A
    Zookeys, 2019;848:103-118.
    PMID: 31160881 DOI: 10.3897/zookeys.848.32211
    Enteromiuspallidus was described by Smith in 1841 without a designated type specimen for the species. Herein, we designate a specimen from the Baakens River system as a neotype for E.pallidus and provide a thorough description for this species to facilitate ongoing taxonomic revisions of southern African Enteromius. Enteromiuspallidus can be distinguished from the other minnows in the "goldie barb group" by having an incomplete lateral line, lack of distinct chevron or tubular markings around lateral line pores, absence of a distinct lateral stripe, absence of wavy parallel lines along scale rows and lack of black pigmentation around the borders of the scales. We provide mtDNA COI sequences for the neotype and an additional specimen from the Baakens River as DNA barcodes of types and topotypes are a fundamental requirement for further taxonomic studies.
    Matched MeSH terms: Rivers
  9. Freitag H, Pangantihon CV, Njunjić I
    Zookeys, 2018.
    PMID: 29740222 DOI: 10.3897/zookeys.754.24276
    Further results are presented of the first field course at Maliau Basin, Malaysian Borneo organized by Taxon Expeditions, an organization which enables citizen scientists to be directly involved in taxonomic discoveries. Three new species of the aquatic beetle genus Grouvellinus Champion, 1923, namely G. leonardodicaprioisp. n., G. andrekuipersisp. n., and G. questsp. n. were collected jointly by the citizen scientists and taxonomists during the fieldwork in Maliau Basin. Material was mainly sampled from sandstone bottom rocks of blackwater streams at altitudes between 900 m and 1,000 m using fine-meshed hand-nets. The genus is widely distributed in the Oriental and Palearctic regions, but these are the first records from the island of Borneo.
    Matched MeSH terms: Rivers
  10. Hasan ZA, Hamidon N, Yusof MS, Ghani AA
    Water Sci Technol, 2012;66(10):2170-6.
    PMID: 22949248 DOI: 10.2166/wst.2012.432
    Bukit Merah Reservoir is the main potable and irrigation water source for Kerian District, Perak State, Malaysia. For the past two decades, the reservoir has experienced water stress. Land-use activities have been identified as the contributor of the sedimentation. The Soil and Water Assessment Tool (SWAT) was used to simulate and quantify the impacts of land-use change in the reservoir watershed. The SWAT was calibrated and two scenarios were constructed representing projected land use in the year 2015 and hypothetical land use to represent extensive land-use change in the catchment area. The simulation results based on 17 years of rainfall records indicate that average water quantity will not be significantly affected but the ground water storage will decrease and suspended sediment will increase. Ground water decrease and sediment yield increase will exacerbate the Bukit Merah Reservoir operation problem.
    Matched MeSH terms: Rivers/chemistry*
  11. Azamathulla HM, Zakaria NA
    Water Sci Technol, 2011;63(10):2225-30.
    PMID: 21977642
    The process involved in the local scour below pipelines is so complex that it makes it difficult to establish a general empirical model to provide accurate estimation for scour. This paper describes the use of artificial neural networks (ANN) to estimate the pipeline scour depth. The data sets of laboratory measurements were collected from published works and used to train the network or evolve the program. The developed networks were validated by using the observations that were not involved in training. The performance of ANN was found to be more effective when compared with the results of regression equations in predicting the scour depth around pipelines.
    Matched MeSH terms: Rivers
  12. Kunacheva C, Boontanon SK, Fujii S, Tanaka S, Musirat C, Artsalee C, et al.
    Water Sci Technol, 2009;60(4):975-82.
    PMID: 19700836 DOI: 10.2166/wst.2009.462
    Perfluorinated compounds (PFCs) have been used for many years, and are distributed all over the world. This study focused on occurrences of PFCs, especially perfluorooctane sulfonate (PFOS) and perfluorooctonoic acid (PFOA) in Thai rivers and industrial estate discharges, while comparing results with rivers of other Asian countries (Japan, China, and Malaysia). Surveys were conducted in Chao Phraya River, Bangpakong River and three industrial estates. A solid phase extraction (SPE) and HPLC-ESI-MS/MS were used for the analysis of these chemicals. The average concentrations of PFOS and PFOA were 1.9 and 4.7 ng/L, respectively in Chao Phraya River, while lower concentrations were detected in Bangpakong River with the averages of 0.7 ng/L for both PFOS and PFOA. Higher concentrations were detected in all industrial estate discharges with the averages of 64.3 ng/L for PFOA and 17.9 ng/L for PFOS., Total loadings from three industrial estates were 1.93 g/d for PFOS and 11.81 g/d for PFOA. The concentration levels in Thai rivers were less than rivers in Japan, China, and Malaysia. However, PFCs loading rate of Chao Phraya River was much higher than Yodo River (Japan), due to the higher flow rate. The other six PFCs were found above the Limit of Quantification (LOQ) in most samples. PFHxS and PFNA were also highly detected in some river samples.
    Matched MeSH terms: Rivers/chemistry*
  13. Lakshmanan S, Murugesan T
    Water Sci Technol, 2017 Jul;76(1-2):87-94.
    PMID: 28708613 DOI: 10.2166/wst.2017.182
    Chlorates are present in the brine stream purged from chlor-alkali plants. Tests were conducted using activated carbon from coconut shell, coal or palm kernel shell to adsorb chlorate. The results show varying levels of adsorption with reduction ranging between 1.3 g/L and 1.8 g/L. This was higher than the chlorate generation rate of that plant, recorded at 1.22 g/L, indicating that chlorate can be adequately removed by adsorption using activated carbon. Coconut based activated carbon exhibited the best adsorption of chlorate of the three types of activated carbon tested. Introducing an adsorption step prior to purging of the brine will be able to reduce chlorate content in the brine stream. The best location for introducing the adsorption step was identified to be after dechlorination of the brine and before resaturation. Introduction of such an adsorption step will enable complete recovery of the brine and prevent brine purging, which in turn will result in less release of chlorides and chlorates to the environment.
    Matched MeSH terms: Rivers/chemistry
  14. Ali MM, Ali ML, Islam MS, Rahman MZ
    Water Sci Technol, 2018 Mar;77(5-6):1418-1430.
    PMID: 29528329 DOI: 10.2166/wst.2018.016
    This study was conducted to assess the levels of toxic metals like arsenic (As), chromium (Cr), cadmium (Cd), and lead (Pb) in water and sediments of the Pasur River in Bangladesh. The ranges of Cr, As, Cd, Pb in water were 25.76-77.39, 2.76-16.73, 0.42-2.98 and 12.69-42.67 μg/L and in sediments were 20.67-83.70, 3.15-19.97, 0.39-3.17 and 7.34-55.32 mg/kg. The level of studied metals in water samples exceeded the safe limits of drinking water, indicating that water from this river is not safe for drinking and cooking. Certain indices, including pollution load index (PLI) and contamination factor (Cif) were used to assess the ecological risk. The PLI indicated progressive deterioration of sediments by the studied metals. Potential ecological risks of metals in sediment indicated low to considerable risk. However, the Cif values of Cd ranged from 0.86 to 8.37 revealed that the examined sediments were strongly impacted by Cd. Considering the severity of potential ecological risk (PER) for single metal (Eir), the descending order of contaminants was Cd > Pb > As > Cr. According the results, some treatment scheme must formulate and implement by the researchers and related management organizations to save the Pasur River from metals contamination.
    Matched MeSH terms: Rivers/chemistry*
  15. Yeoh KL, Puay HT, Abdullah R, Abd Manan TS
    Water Sci Technol, 2023 Jul;88(1):75-91.
    PMID: 37452535 DOI: 10.2166/wst.2023.193
    Short-term streamflow prediction is essential for managing flood early warning and water resources systems. Although numerical models are widely used for this purpose, they require various types of data and experience to operate the model and often tedious calibration processes. Under the digital revolution, the application of data-driven approaches to predict streamflow has increased in recent decades. In this work, multiple linear regression (MLR) and random forest (RF) models with three different input combinations are developed and assessed for multi-step ahead short-term streamflow predictions, using 14 years of hydrological datasets from the Kulim River catchment, Malaysia. Introducing more precedent streamflow events as predictor improves the performance of these data-driven models, especially in predicting peak streamflow during the high-flow event. The RF model (Nash-Sutcliffe efficiency (NSE): 0.599-0.962) outperforms the MLR model (NSE: 0.584-0.963) in terms of overall prediction accuracy. However, with the increasing lead-time length, the models' overall prediction accuracy on the arrival time and magnitude of peak streamflow decrease. These findings demonstrate the potential of decision tree-based models, such as RF, for short-term streamflow prediction and offer insights into enhancing the accuracy of these data-driven models.
    Matched MeSH terms: Rivers
  16. Gazzaz NM, Yusoff MK, Juahir H, Ramli MF, Aris AZ
    Water Environ Res, 2013 Aug;85(8):751-66.
    PMID: 24003601
    This study investigated relationships of a water quality index (WQI) with multiple water quality variables (WQVs), explored variability in water quality over time and space, and established linear and non-linear models predictive of WQI from raw WQVs. Data were processed using Spearman's rank correlation analysis, multiple linear regression, and artificial neural network modeling. Correlation analysis indicated that from a temporal perspective, the WQI, temperature, and zinc, arsenic, chemical oxygen demand, sodium, and dissolved oxygen concentrations increased, whereas turbidity and suspended solids, total solids, nitrate nitrogen (NO3-N), and biochemical oxygen demand concentrations decreased with year. From a spatial perspective, an increase with distance of the sampling station from the headwater was exhibited by 10 WQVs: magnesium, calcium, dissolved solids, electrical conductivity, temperature, NO3-N, arsenic, chloride, potassium, and sodium. At the same time, the WQI; Escherichia coli bacteria counts; and suspended solids, total solids, and dissolved oxygen concentrations decreased with distance from the headwater. Lastly, regression and artificial neural network models with high prediction powers (81.2% and 91.4%, respectively) were developed and are discussed.
    Matched MeSH terms: Rivers/chemistry*
  17. Gazzaz NM, Yusoff MK, Ramli MF, Juahir H, Aris AZ
    Water Environ Res, 2015 Feb;87(2):99-112.
    PMID: 25790513
    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
    Matched MeSH terms: Rivers/chemistry*
  18. Rasul MG, Islam MS, Yunus RBM, Mokhtar MB, Alam L, Yahaya FM
    Water Environ Res, 2017 Dec 01;89(12):2088-2102.
    PMID: 28087920 DOI: 10.2175/106143017X14839994522740
      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
    Matched MeSH terms: Rivers/chemistry*
  19. Yusof N, Haraguchi A, Hassan MA, Othman MR, Wakisaka M, Shirai Y
    Waste Manag, 2009 Oct;29(10):2666-80.
    PMID: 19564103 DOI: 10.1016/j.wasman.2009.05.022
    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.
    Matched MeSH terms: Rivers/chemistry*
  20. Peck Yen T, Rohasliney H
    Trop Life Sci Res, 2013 Aug;24(1):19-34.
    PMID: 24575239 MyJurnal
    This paper aimed to describe the effects of sand mining on the Kelantan River with respect to physical and chemical parameter analyses. Three replicates of water samples were collected from five stations along the Kelantan River (November 2010 until February 2011). The physical parameters included water temperature, water conductivity, dissolved oxygen (DO), pH, total dissolved solids (TDS), total suspended solids (TSS) and turbidity, whereas the chemical parameters included the concentration of nitrogen nutrients such as ammonia, nitrate and nitrite. The Kelantan River case study revealed that TSS, turbidity and nitrate contents exceed the Malaysian Interim National Water Quality Standard (INWQS) range and are significantly different between Station 1 (KK) and Station 3 (TM). Station 1 has the largest variation of TDS, TSS, turbidity and nitrogen nutrients because of sand mining and upstream logging activities. The extremely high content of TSS and the turbidity have caused poor and stressful conditions for the aquatic life in the Kelantan River.
    Matched MeSH terms: Rivers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links