Displaying publications 1 - 20 of 514 in total

Abstract:
Sort:
  1. Bohlen J, Dvořák T, Šlechta V, Šlechtová V
    Mol Phylogenet Evol, 2020 07;148:106806.
    PMID: 32247884 DOI: 10.1016/j.ympev.2020.106806
    Western Southeast Asia is hosting one of the world's most diverse faunas, and one of the reasons for this huge diversity is the complex geologic past of the area, increasing the frequency of isolation and expansion events over evolutionary time scale. As an example case, the present study reveals the phylogeny and biogeographic history of the Paracanthocobitis zonalternans species complex, small benthic freshwater fish (Teleostei: Nemacheilidae) that are commonly occurring across western Southeast Asia (from central Myanmar through western and southern Thailand to northern Malaysia). The group is particularly interesting since it occurs in three biogeographic subdivisions (Indian, Indochinese, Malay/Sundaic) and across all of the major biogeographic barriers in the region. Basing on mitochondrial and nuclear sequence data of 93 samples from about 50 localities we found six major clades, most with exclusive geographic distribution. Divergence time dated the origin of the P. zonalternans species complex to early Miocene (17.8 MYA) and a biogeographic analysis identified the Tenasserim region as the ancestral region. From this region the fish spread during periods of lowered global sea level, particularly during late Miocene (11-8 MYA) northwards into all Burmese river basins and southwards into south Thailand and northern Malaysia. Besides lowered global sea level periods, local stream capture events allowed the complex to expand, e.g. into the Mae Klong basin. Strong fragmentations during periods with elevated sea level during the Pliocene and Pleistocene repeatedly restricted populations to refuges and shaped the observed major lineages. Our results document a higher diversity within the P. zonalternans species complex than formerly believed and a strong impact of global sea level on its evolutionary history. Low sea levels promoted dispersal and elevated sea levels fragmentation events. A very similar impact of sea level changes can be expected in all stationary fauna (freshwater and terrestrial) in all non-mountainous coastal regions worldwide.
    Matched MeSH terms: Rivers
  2. Vinuthinee N, Azreen-Redzal A, Juanarita J, Zunaina E
    Clin Ophthalmol, 2015;9:203-6.
    PMID: 25678769 DOI: 10.2147/OPTH.S74548
    A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal.
    Matched MeSH terms: Rivers
  3. Kadhum SA, Ishak MY, Zulkifli SZ
    Environ Geochem Health, 2017 Oct;39(5):1145-1158.
    PMID: 27848092 DOI: 10.1007/s10653-016-9883-4
    This study applied the use of sequential extraction technique and simple bioaccessibility extraction test to quantify the bioavailable fractions and the human bioaccessible concentration of metals collected from nine stations in surface sediment of the Langat River. The concentrations of total and bioaccessible metals from different stations were in the range of 0.49-1.04, 0.10-0.32 μg g-1 for T-Cd, Bio-Cd, respectively, and 12.9-128.03, 2.06-8.53 μg kg-1 for T-Hg, Bio-Hg, respectively. The results revealed highest R-Bio-Cd in Banting station (55.3 %), while the highest R-Bio-Hg was in Kajang station (49.61 %). The chemical speciation of Cd in most sampling stations was in the order of oxidisable-organic > residual > exchangeable > acid-reducible, while speciation of Hg was in the order of exchangeable > residual > oxidisable-organic > acid-reducible. The correlation matric of mean content showed that the TOM, particle size and Mg++ in polluted surface sediments was highly correlated with total mercury. The PCA showed that the main factors influencing the bioaccessibility of Hg in surface sediments were the sediment TOM, F1 (EFLE) and F3 (oxidation-organic), while the factor influencing the bioaccessibility of Cd was the F3 (oxidation-organic) and T-Cd.
    Matched MeSH terms: Rivers/chemistry*
  4. Kadhum SA, Ishak MY, Zulkifli SZ
    Environ Sci Pollut Res Int, 2016 Apr;23(7):6312-21.
    PMID: 26614452 DOI: 10.1007/s11356-015-5853-0
    The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g(1) dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson's correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future.
    Matched MeSH terms: Rivers/chemistry*
  5. M. Hamid Ch, M. Ashraf, Qudsia Hamid, Syed Mansoor Sarwar, Zulfiqar Ahmad Saqib
    Sains Malaysiana, 2017;46:413-420.
    Remote Sensing (RS) and Geographical Information Systems (GIS) are widely used for change detection in rivers caused
    by erosion and accretion. Digital image processing techniques and GIS analysis capabilities are used for detecting
    temporal variations of erosion and accretion characteristics between the years 1999 and 2011 in a 40 km long Marala
    Alexandria reach of River Chenab. Landsat satellite images for the years 1999, 2007 and 2011 were processed to analyze
    the river channel migration, changes in the river width and the rate of erosion and accretion. Analyses showed that the
    right bank was under erosion in both time spans, however high rate of deposition is exhibited in middle reaches. The
    maximum erosion was 1569843 m2
    and 1486160 m2
    along the right bank at a distance of 24-28 km downstream of the
    Marala barrage in the time span of 1999-2007 and 2007-2011, respectively. Along right bank mainly there is trend of
    accretion but erosion is much greater between 20 and 28 km reach. Maximum accretion was 5144584 m2
    from 1999-2007
    and 2950110 m2
    from 2007-2011 on the right bank downstream of the Marala Barrage. The derived results of channel
    migration were validated by comparing with SRTM data to assess the accuracy of image classification. Integration of remote
    sensing data with GIS is efficient and economical technique to assess land losses and channel changes in large rivers.
    Matched MeSH terms: Rivers
  6. Wilson JJ, Sing KW, Chen PN, Zieritz A
    PMID: 28885060 DOI: 10.1080/24701394.2017.1373109
    Environmental DNA detection has emerged as a powerful tool to monitor aquatic species without the need for capture or visual identification and is particularly useful for rare or elusive species. Our objective was to develop an eDNA approach for detecting the southern river terrapin (Batagur affinis) in Malaysia. We designed species-specific primers for a fragment of B. affinis mtDNA and evaluated their effectiveness in silico, in vitro and in situ. The primers amplified 110 bp of the cytochrome b mtDNA sequence of B. affinis from aquarium water samples housing nine juvenile B. affinis. We also successfully detected B. affinis eDNA from river samples taken from a site where turtles were known to be in the vicinity. Prospects and challenges of using an eDNA approach to help determine the distribution of B. affinis, essential information for an effective conservation plan, are discussed.
    Matched MeSH terms: Rivers
  7. Chuah CJ, Mukhaidin N, Choy SH, Smith GJD, Mendenhall IH, Lim YAL, et al.
    Sci Total Environ, 2016 08 15;562:701-713.
    PMID: 27110981 DOI: 10.1016/j.scitotenv.2016.03.247
    A catchment-scale investigation of the prevalence of Cryptosporidium and Giardia in the Kuang River Basin was carried out during the dry and rainy seasons. Water samples were collected from the Kuang River and its tributaries as well as a major irrigation canal at the study site. We also investigated the prevalence of gastrointestinal parasitic infection among dairy and beef cattle hosts. Cryptosporidium and/or Giardia were detected in all the rivers considered for this study, reflecting their ubiquity within the Kuang River Basin. The high prevalence of Cryptosporidium/Giardia in the upper Kuang River and Lai River is of a particular concern as both drain into the Mae Kuang Reservoir, a vital source of drinking-water to many local towns and villages at the research area. We did not, however, detected neither Cryptosporidium nor Giardia were in the irrigation canal. The frequency of Cryptosporidium/Giardia detection nearly doubled during the rainy season compared to the dry season, highlighting the importance of water as an agent of transport. In addition to the overland transport of these protozoa from their land sources (e.g. cattle manure, cess pits), Cryptosporidium/Giardia may also be re-suspended from the streambeds (a potentially important repository) into the water column of rivers during storm events. Faecal samples from dairy and beef cattle showed high infection rates from various intestinal parasites - 97% and 94%, respectively. However, Cryptosporidium and Giardia were only detected in beef cattle. The difference in management style between beef (freeranging) and dairy cattle (confined) may account for this disparity. Finally, phylogenetic analyses revealed that the Cryptosporidium/Giardia-positive samples contained C. ryanae (non-zoonotic) as well as Giardia intestinalis assemblages B (zoonotic) and E (non-zoonotic). With only basic water treatment facilities afforded to them, the communities of the rural area relying on these water supplies are highly at risk to Cryptosporidium/Giardia infections.
    Matched MeSH terms: Rivers/parasitology*
  8. Dai C, Li S, Duan Y, Leong KH, Tu Y, Zhou L
    Sci Total Environ, 2021 Dec 20;801:149730.
    PMID: 34467938 DOI: 10.1016/j.scitotenv.2021.149730
    Pharmaceuticals in aquatic environment have raised wide attention in recent years due to their potential adverse effects and bioaccumulation in biota. China has been a major producer and consumer of pharmaceuticals, however, the potential human health risk of these chemicals is yet to be determined in China. In this study, we evaluated available exposure data for twenty pharmaceuticals in surface waters from Chinese five major river basins (the Yangtze, Haihe, Pearl, Songliao, and Yellow River Basins), and human health risk assessment was performed. Based on the concentration data and risk data, we conducted research on the source, cause, and control measures of the pharmaceuticals. The twenty pharmaceuticals were found to be ubiquitous in China with median concentrations between 0.09 and 304 ng/L. The estimated daily intake of pharmaceuticals from drinking water and eating fish was calculated. The intake via drinking water was significantly lower than that via eating fish. The risk quotients via water intake and fish consumption ranged from 0 to 17.2, with estrogen and sulfapyridine highest among the twenty pharmaceuticals. High risks of exposure were mainly in North China, including the Haihe and Songliao River Basins. This is the first analysis in Chinese major river basins that has filled the gaps in the research on the human health risks of pharmaceuticals. The results of the study provide basic information of pharmaceutical intake from drinking water and eating fish in China and provide insights into the risk management guidance of pharmaceuticals, and will facilitate the optimization of health advisories and policy making.
    Matched MeSH terms: Rivers
  9. Nayfa MG, Jones DB, Benzie JAH, Jerry DR, Zenger KR
    Front Genet, 2020;11:567969.
    PMID: 33193660 DOI: 10.3389/fgene.2020.567969
    Domestication to captive rearing conditions, along with targeted selective breeding have genetic consequences that vary from those in wild environments. Nile tilapia (Oreochromis niloticus) is one of the most translocated and farmed aquaculture species globally, farmed throughout Asia, North and South America, and its African native range. In Egypt, a breeding program established the Abbassa Strain of Nile tilapia (AS) in 2002 based on local broodstock sourced from the Nile River. The AS has been intensively selected for growth and has gone through genetic bottlenecks which have likely shifted levels and composition of genetic diversity within the strain. Consequently, there are questions on the possible genetic impact AS escapees may have on endemic populations of Nile tilapia. However, to date there have been no genetic studies comparing genetic changes in the domesticated AS to local wild populations. This study used 9,827 genome-wide SNPs to investigate population genetic structure and signatures of selection in the AS (generations 9-11) and eight wild Nile tilapia populations from Egypt. SNP analyses identified two major genetic clusters (captive and wild populations), with wild populations showing evidence of isolation-by-distance among the Nile Delta and upstream riverine populations. Between genetic clusters, approximately 6.9% of SNPs were identified as outliers with outliers identified on all 22 O. niloticus chromosomes. A lack of localized outlier clustering on the genome suggests that no genes of major effect were presently detected. The AS has retained high levels of genetic diversity (Ho_All = 0.21 ± 0.01; He_All = 0.23 ± 0.01) when compared to wild populations (Ho_All = 0.18 ± 0.01; He_All = 0.17 ± 0.01) after 11 years of domestication and selective breeding. Additionally, 565 SNPs were unique within the AS line. While these private SNPs may be due to domestication signals or founder effects, it is suspected that introgression with blue tilapia (Oreochromis aureus) has occurred. This study highlights the importance of understanding the effects of domestication in addition to wild population structure to inform future management and dissemination decisions. Furthermore, by conducting a baseline genetic study of wild populations prior to the dissemination of a domestic line, the effects of aquaculture on these populations can be monitored over time.
    Matched MeSH terms: Rivers
  10. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al.
    Nature, 2019 05;569(7755):215-221.
    PMID: 31068722 DOI: 10.1038/s41586-019-1111-9
    Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
    Matched MeSH terms: Rivers*
  11. Al-Qaim FF, Abdullah MP, Othman MR, Latip J, Zakaria Z
    J Chromatogr A, 2014 Jun 6;1345:139-53.
    PMID: 24768127 DOI: 10.1016/j.chroma.2014.04.025
    An analytical method that facilitated the analysis of 11 pharmaceuticals residue (caffeine, prazosin, enalapril, carbamazepine, nifedipine, levonorgestrel, simvastatin, hydrochlorothiazide, gliclazide, diclofenac-Na, and mefenamic acid) with a single pre-treatment protocol was developed. The proposed method included an isolation and concentration procedure using solid phase extraction (Oasis HLB), a separation step using high-performance liquid chromatography, and a detection procedure that applies time-of-flight mass spectrometry. The method was validated for drinking water (DW), surface water (SW), sewage treatment plant (STP) influent and effluent, and hospital (HSP) influent and effluent. The limits of quantification were as low as 0.4, 1.6, 5, 3, 2.2 and 11 ng/L in DW, SW, HSP influent and effluent, STP effluent, and STP influent, respectively. On average, good recoveries higher than 75% were obtained for most of the target analytes in all matrices. Matrix effect was evaluated for all samples matrices. The proposed method successfully determined and quantified the target compounds in raw and treated wastewater of four STPs and three hospitals in Malaysia, as well as in two SW sites. The results showed that a number of the studied compounds pose moderate to high persistency in sewage treatment effluents as well as in the recipient rivers, namely; caffeine, simvastatin, and hydrochlorothiazide. Ten out of 11 compounds were detected and quantified in 13 sampling points. Caffeine was detected with the highest level, with concentrations reaching up to 9099 ng/L in STP influent.
    Matched MeSH terms: Rivers/chemistry*
  12. Azamathulla HM, Zakaria NA
    Water Sci Technol, 2011;63(10):2225-30.
    PMID: 21977642
    The process involved in the local scour below pipelines is so complex that it makes it difficult to establish a general empirical model to provide accurate estimation for scour. This paper describes the use of artificial neural networks (ANN) to estimate the pipeline scour depth. The data sets of laboratory measurements were collected from published works and used to train the network or evolve the program. The developed networks were validated by using the observations that were not involved in training. The performance of ANN was found to be more effective when compared with the results of regression equations in predicting the scour depth around pipelines.
    Matched MeSH terms: Rivers
  13. Alsalahi MA, Latif MT, Ali MM, Dominick D, Khan MF, Mustaffa NI, et al.
    Mar Pollut Bull, 2015 Apr 15;93(1-2):278-83.
    PMID: 25682566 DOI: 10.1016/j.marpolbul.2015.01.011
    This study aims to determine the concentration of sterols used as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. Samples were collected during different seasons through the use of a rotation drum. The analysis of sterols was performed using gas chromatography equipped with a flame ionisation detector (GC-FID). The results showed that the concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L(-1). The total sterol concentration was found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).
    Matched MeSH terms: Rivers/chemistry*
  14. Isobe T, Takada H, Kanai M, Tsutsumi S, Isobe KO, Boonyatumanond R, et al.
    Environ Monit Assess, 2007 Dec;135(1-3):423-40.
    PMID: 17370135
    A comprehensive monitoring survey for polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals (EDCs) utilizing mussels as sentinel organisms was conducted in South and Southeast Asia as a part of the Asian Mussel Watch project. Green mussel (Perna viridis) samples collected from a total of 48 locations in India, Indonesia, Singapore, Malaysia, Thailand, Cambodia, Vietnam, and the Philippines during 1994-1999 were analyzed for PAHs, EDCs including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA), and linear alkylbenzenes (LABs) as molecular markers for sewage. Concentrations of NP ranged from 18 to 643 ng/g-dry tissue. The highest levels of NP in Malaysia, Singapore, the Philippines, and Indonesia were comparable to those observed in Tokyo Bay. Elevated concentrations of EDCs were not observed in Vietnam and Cambodia, probably due to the lower extent of industrialization in these regions. No consistent relationship between concentrations of phenolic EDCs and LABs were found, suggesting that sewage is not a major source of EDCs. Concentrations of PAHs ranged from 11 to 1,133 ng/g-dry, which were categorized as "low to moderate" levels of pollution. The ratio of methylphenanthrenes to phenanthrene (MP/P ratio) was >1.0 in 20 out of 25 locations, indicating extensive input of petrogenic PAHs. This study provides a bench-mark for data on the distribution of anthropogenic contaminants in this region, which is essential in evaluating temporal and spatial variation and effect of future regulatory measures.
    Matched MeSH terms: Rivers/chemistry
  15. Syafiuddin A, Salmiati S, Hadibarata T, Kueh ABH, Salim MR, Zaini MAA
    Sci Rep, 2018 01 17;8(1):986.
    PMID: 29343711 DOI: 10.1038/s41598-018-19375-1
    The current status of silver nanoparticles (AgNPs) in the water environment in Malaysia was examined and reported. For inspection, two rivers and two sewage treatment plants (STPs) were selected. Two activated carbons derived from oil palm (ACfOPS) and coconut (ACfCS) shells were proposed as the adsorbent to remove AgNPs. It was found that the concentrations of AgNPs in the rivers and STPs are in the ranges of 0.13 to 10.16 mg L-1 and 0.13 to 20.02 mg L-1, respectively, with the highest concentration measured in July. ACfOPS and ACfCS removed up to 99.6 and 99.9% of AgNPs, respectively, from the water. The interaction mechanism between AgNPs and the activated carbon surface employed in this work was mainly the electrostatic force interaction via binding Ag+ with O- presented in the activated carbon to form AgO. Fifteen kinetic models were compared statistically to describe the removal of AgNPs. It was found that the experimental adsorption data can be best described using the mixed 1,2-order model. Therefore, this model has the potential to be a candidate for a general model to describe AgNPs adsorption using numerous materials, its validation of which has been confirmed with other material data from previous works.
    Matched MeSH terms: Rivers
  16. Idris NSU, Low KH, Koki IB, Kamaruddin AF, Md Salleh K, Zain SM
    Environ Monit Assess, 2017 May;189(5):220.
    PMID: 28425070 DOI: 10.1007/s10661-017-5939-x
    The spatial distributions of Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, As, Se and Pb in Hemibagrus sp. from Selangor River and a reference site were determined with inductively coupled plasma-mass spectrometer, in comparison to the levels in their surrounding water body and sediments. The results demonstrated significant differences in elemental accumulation pattern in different fish tissues originated from both sites. The variations observed were mainly subjected to their metabolic activities, and also the influence of the surrounding medium. In general, the liver tends to accumulate higher concentration of metals followed by the gills, and muscle tissues. The data also indicate associations between the concentrations of metal contaminants measured in the fish and the levels observed at the sites. The concentrations of hazardous metals As, Se and Pb in all the studied tissues reflect the influence of anthropogenic inputs. This suggests the potential utility of widely available Hemibagrus sp. as a valuable bioindicator of metal pollution in environmental monitoring and assessment.
    Matched MeSH terms: Rivers
  17. Zaini Hamzah, Siti Afiqah Abdul Rahman, Ahmad Saat, Siti Shahrina Agos, Zaharudin Ahmad
    MyJurnal
    The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
    Matched MeSH terms: Rivers
  18. Amran B. Ab. Majid, Mohd Zahari Abdullah, Zaharuddin Ahmad
    The determination technique for U (238U, 235U, 234U) and Th (232Th, 230Th, 228Th) isotopes using alpha spectrometry was developed. The developed technique involved digestion, dissolution, coprecipitation, solvent extraction and electrodeposition methods. The NBS River Sediment and Rocky Flats Soil Standard Reference Materials were analysed to determine the accuracy of the technique. A good accuracy and high percentage recovery of the carrier (70 - 90%) indicated that the developed technique was suitable for U and Th isotopes determination. The technique was used to determine the U and Th concentration in monazite, xenotime and zircon samples. The results showed that the U and Th total concentrations were in the range of 21.03 to 171.25 Bq/g and 27.48 to 242.87 Bq/g respectively.
    Kaedah penguraian, pemelarutan, pemendakan bersama, ekstraksi pelarut dan pemendapan elektrik telah dikaji dan digunakan untuk mendapatkan suatu teknik yang terbaik dalam penentuan isotop uranium 234U, 235U & 238U) dan torium 228Th, 230Th & 232Th) menggunakan sistem spektrometri alfa. Kepekatan isotop U dan Th dalam bahan rujukan piawai River Sediment dan Rocky Flats Soil (NBS) telah dianalisis untuk menentukan kejituan teknik yang dibangunkan. Kajian ini mendapati kepekatan isotop yang diperolehi adalah menghampiri nilai teraku (sijil) dan peratus perolehan semula pembawa yang besar (70-90%). Ini menunjukkan teknik yang dibangunkan sesuai digunakan untuk penentuan isotop uranium dan torium. Seterusnya teknik yang dibangunkan telah digunakan untuk menentukan kandungan uranium dan torium dalam sampel monazit, xenotim dan zirkon tempatan. Kepekatan jumlah isotop uranium yang diperolehi didapati berada dalam julat 21.03 - 171.25 Bq/g manakala kepekatan jumlah isotop torium pula terletak antara 27.48 - 242.87 Bq/g.
    Matched MeSH terms: Rivers
  19. Hamsawahini K, Sathishkumar P, Ahamad R, Yusoff AR
    Talanta, 2016 Feb 1;148:101-7.
    PMID: 26653429 DOI: 10.1016/j.talanta.2015.10.044
    An effective electrode was developed based on electromembrane extraction (EME) and square wave voltammetry (SWV) for simultaneous separation, pre-concentration and determination of lead (II) (Pb(II)) ions in complex aqueous samples. Electrochemically reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilized in conjunction with the SWV. Pb(II) ions were extracted from an aqueous sample solution into an acidic acceptor phase (1M HCl) in the lumen of the polyvinylidene fluoride (PVDF) membrane bag by the application of voltage of maximum 6 V across the supported liquid membrane (SLM), consisting of organic solvent and di-(2-ethylhexyl)phosphoric acid (D2EHPA). The parameters affecting the EME were optimized for Pb(II) ions. The optimum EME conditions were found to be 20% D2EHPA in 1-octanol impregnated in the wall of PVDF membrane (PVDF17) as the SLM, extraction time of 20 min, pH of sample solution of 8 and a voltage of 5 V. The PVDF-ErGO-GRC electrode system attained enrichment factors of 40 times and 80% of extraction with relative standard deviations (n=5) of 8.3%. Good linearity ranging from 0.25 to 2 nM with coefficients correlation of 0.999 was obtained. The Pb(II) ions detection limit of PVDF-ErGO-GRC electrode was found to be 0.09 nM. The newly developed single setup electrochemical system was applied to complex aqueous samples such as tap, river and sea water to evaluate the feasibility of the method for applications.
    Matched MeSH terms: Rivers
  20. Hamsawahini K, Sathishkumar P, Ahamad R, Yusoff AR
    Talanta, 2015 Nov 1;144:969-76.
    PMID: 26452915 DOI: 10.1016/j.talanta.2015.07.049
    In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water.
    Matched MeSH terms: Rivers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links