Displaying publications 1 - 20 of 124 in total

Abstract:
Sort:
  1. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z
    J Epidemiol Glob Health, 2015 Dec;5(4):297-310.
    PMID: 25944153 DOI: 10.1016/j.jegh.2015.04.003
    Malaysia has abundant sources of drinking water from river and groundwater. However, rapid developments have deteriorated quality of drinking water sources in Malaysia. Heavy metal studies in terms of drinking water, applications of health risk assessment and bio-monitoring in Malaysia were reviewed from 2003 to 2013. Studies on heavy metal in drinking water showed the levels are under the permissible limits as suggested by World Health Organization and Malaysian Ministry of Health. Future studies on the applications of health risk assessment are crucial in order to understand the risk of heavy metal exposure through drinking water to Malaysian population. Among the biomarkers that have been reviewed, toenail is the most useful tool to evaluate body burden of heavy metal. Toenails are easy to collect, store, transport and analysed. This review will give a clear guidance for future studies of Malaysian drinking water. In this way, it will help risk managers to minimize the exposure at optimum level as well as the government to formulate policies in safe guarding the population.
    Matched MeSH terms: Rivers/chemistry
  2. Abdul-Hadi A, Mansor S, Pradhan B, Tan CK
    Environ Monit Assess, 2013 May;185(5):3977-91.
    PMID: 22930185 DOI: 10.1007/s10661-012-2843-2
    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
    Matched MeSH terms: Rivers/chemistry
  3. Adnan NH, Zakaria MP, Juahir H, Ali MM
    J Environ Sci (China), 2012;24(9):1600-8.
    PMID: 23520867
    The Langat River in Malaysia has been experiencing anthropogenic input from urban, rural and industrial activities for many years. Sewage contamination, possibly originating from the greater than three million inhabitants of the Langat River Basin, were examined. Sediment samples from 22 stations (SL01-SL22) along the Langat River were collected, extracted and analysed by GC-MS. Six different sterols were identified and quantified. The highest sterol concentration was found at station SL02 (618.29 ng/g dry weight), which situated in the Balak River whereas the other sediment samples ranged between 11.60 and 446.52 ng/g dry weight. Sterol ratios were used to identify sources, occurrence and partitioning of faecal matter in sediments and majority of the ratios clearly demonstrated that sewage contamination was occurring at most stations in the Langat River. A multivariate statistical analysis was used in conjunction with a combination of biomarkers to better understand the data that clearly separated the compounds. Most sediments of the Langat River were found to contain low to mid-range sewage contamination with some containing 'significant' levels of contamination. This is the first report on sewage pollution in the Langat River based on a combination of biomarker and multivariate statistical approaches that will establish a new standard for sewage detection using faecal sterols.
    Matched MeSH terms: Rivers/chemistry*
  4. Ahmed MF, Mokhtar MB, Alam L
    Environ Geochem Health, 2021 Feb;43(2):897-914.
    PMID: 32372251 DOI: 10.1007/s10653-020-00571-w
    The prolonged persistence of toxic arsenic (As) in environment is due to its non-biodegradable characteristic. Meanwhile, several studies have reported higher concentrations of As in Langat River. However, it is the first study in Langat River Basin, Malaysia, that As concentrations in drinking water supply chain were determined simultaneously to predict the health risks of As ingestion. Water samples collected in 2015 from the four stages of drinking water supply chain were analysed for As concentration by inductively coupled plasma mass spectrometry. Determined As concentrations along with the time series data (2004-2015) were significantly within the maximum limit 0.01 mg/L of drinking water quality standard set by World Health Organization. The predicted As concentration by auto-regression moving average was 3.45E-03 mg/L in 2020 at 95% level based on time series data including climatic control variables. Long-term As ingestion via household filtration water at Langat Basin showed no potential lifetime cancer risk (LCR) 9.7E-06 (t = 6.68; p = 3.37E-08) as well as non-carcinogenic hazard quotient (HQ) 4.8E-02 (t = 6.68; p = 3.37E-08) risk at 95% level. However, the changing landscape, ex-mining ponds and extensive use of pesticides for palm oil plantation at Langat Basin are considered as the major sources of increased As concentration in Langat River. Therefore, a two-layer water filtration system at Langat Basin should be introduced to accelerate the achievement of sustainable development goal of getting safe drinking water supply.
    Matched MeSH terms: Rivers/chemistry
  5. Ahmed MF, Alam L, Mohamed CAR, Mokhtar MB, Ta GC
    PMID: 30241360 DOI: 10.3390/ijerph15102056
    The presence of toxic polonium-210 (Po-210) in the environment is due to the decay of primordial uranium-238. Meanwhile, several studies have reported elevated Po-210 radioactivity in the rivers around the world due to both natural and anthropogenic factors. However, the primary source of Po-210 in Langat River, Malaysia might be the natural weathering of granite rock along with mining, agriculture and industrial activities. Hence, this is the first study to determine the Po-210 activity in the drinking water supply chain in the Langat River Basin to simultaneously predict the human health risks of Po-210 ingestion. Therefore, water samples were collected in 2015⁻2016 from the four stages of the water supply chain to analyze by Alpha Spectrometry. Determined Po-210 activity, along with the influence of environmental parameters such as time-series rainfall, flood incidents and water flow data (2005⁻2015), was well within the maximum limit for drinking water quality standard proposed by the Ministry of Health Malaysia and World Health Organization. Moreover, the annual effective dose of Po-210 ingestion via drinking water supply chain indicates an acceptable carcinogenic risk for the populations in the Langat Basin at 95% confidence level; however, the estimated annual effective dose at the basin is higher than in many countries. Although several studies assume the carcinogenic risk of Po-210 ingestion to humans for a long time even at low activity, however, there is no significant causal study which links Po-210 ingestion via drinking water and cancer risk of the human. Since the conventional coagulation method is unable to remove Po-210 entirely from the treated water, introducing a two-layer water filtration system at the basin can be useful to achieve SDG target 6.1 of achieving safe drinking water supplies well before 2030, which might also be significant for other countries.
    Matched MeSH terms: Rivers/chemistry*
  6. Ajorlo M, Abdullah RB, Yusoff MK, Halim RA, Hanif AH, Willms WD, et al.
    Environ Monit Assess, 2013 Oct;185(10):8649-58.
    PMID: 23604787 DOI: 10.1007/s10661-013-3201-8
    This study investigates the applicability of multivariate statistical techniques including cluster analysis (CA), discriminant analysis (DA), and factor analysis (FA) for the assessment of seasonal variations in the surface water quality of tropical pastures. The study was carried out in the TPU catchment, Kuala Lumpur, Malaysia. The dataset consisted of 1-year monitoring of 14 parameters at six sampling sites. The CA yielded two groups of similarity between the sampling sites, i.e., less polluted (LP) and moderately polluted (MP) at temporal scale. Fecal coliform (FC), NO3, DO, and pH were significantly related to the stream grouping in the dry season, whereas NH3, BOD, Escherichia coli, and FC were significantly related to the stream grouping in the rainy season. The best predictors for distinguishing clusters in temporal scale were FC, NH3, and E. coli, respectively. FC, E. coli, and BOD with strong positive loadings were introduced as the first varifactors in the dry season which indicates the biological source of variability. EC with a strong positive loading and DO with a strong negative loading were introduced as the first varifactors in the rainy season, which represents the physiochemical source of variability. Multivariate statistical techniques were effective analytical techniques for classification and processing of large datasets of water quality and the identification of major sources of water pollution in tropical pastures.
    Matched MeSH terms: Rivers/chemistry*
  7. Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S
    J Chromatogr A, 2010 Oct 29;1217(44):6791-806.
    PMID: 20851398 DOI: 10.1016/j.chroma.2010.08.033
    Pollutants such as human pharmaceuticals and synthetic hormones that are not covered by environmental legislation have increasingly become important emerging aquatic contaminants. This paper reports the development of a sensitive and selective multi-residue method for simultaneous determination and quantification of 23 pharmaceuticals and synthetic hormones from different therapeutic classes in water samples. Target pharmaceuticals include anti-diabetic, antihypertensive, hypolipidemic agents, β2-adrenergic receptor agonist, antihistamine, analgesic and sex hormones. The developed method is based on solid phase extraction (SPE) followed by instrumental analysis using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with 30 min total run time. River water samples (150 mL) and (sewage treatment plant) STP effluents (100 mL) adjusted to pH 2, were loaded into MCX (3 cm(3), 60 mg) cartridge and eluted with four different reagents for maximum recovery. Quantification was achieved by using eight isotopically labeled internal standards (I.S.) that effectively correct for losses during sample preparation and matrix effects during LC-ESI-MS/MS analysis. Good recoveries higher than 70% were obtained for most of target analytes in all matrices. Method detection limit (MDL) ranged from 0.2 to 281 ng/L. The developed method was applied to determine the levels of target analytes in various samples, including river water and STP effluents. Among the tested emerging pollutants, chlorothiazide was found at the highest level, with concentrations reaching up to 865 ng/L in STP effluent, and 182 ng/L in river water.
    Matched MeSH terms: Rivers/chemistry*
  8. Al-Qaim FF, Abdullah MP, Othman MR, Latip J, Zakaria Z
    J Chromatogr A, 2014 Jun 6;1345:139-53.
    PMID: 24768127 DOI: 10.1016/j.chroma.2014.04.025
    An analytical method that facilitated the analysis of 11 pharmaceuticals residue (caffeine, prazosin, enalapril, carbamazepine, nifedipine, levonorgestrel, simvastatin, hydrochlorothiazide, gliclazide, diclofenac-Na, and mefenamic acid) with a single pre-treatment protocol was developed. The proposed method included an isolation and concentration procedure using solid phase extraction (Oasis HLB), a separation step using high-performance liquid chromatography, and a detection procedure that applies time-of-flight mass spectrometry. The method was validated for drinking water (DW), surface water (SW), sewage treatment plant (STP) influent and effluent, and hospital (HSP) influent and effluent. The limits of quantification were as low as 0.4, 1.6, 5, 3, 2.2 and 11 ng/L in DW, SW, HSP influent and effluent, STP effluent, and STP influent, respectively. On average, good recoveries higher than 75% were obtained for most of the target analytes in all matrices. Matrix effect was evaluated for all samples matrices. The proposed method successfully determined and quantified the target compounds in raw and treated wastewater of four STPs and three hospitals in Malaysia, as well as in two SW sites. The results showed that a number of the studied compounds pose moderate to high persistency in sewage treatment effluents as well as in the recipient rivers, namely; caffeine, simvastatin, and hydrochlorothiazide. Ten out of 11 compounds were detected and quantified in 13 sampling points. Caffeine was detected with the highest level, with concentrations reaching up to 9099 ng/L in STP influent.
    Matched MeSH terms: Rivers/chemistry*
  9. Al-Shami SA, Md Rawi CS, Ahmad AH, Abdul Hamid S, Mohd Nor SA
    Ecotoxicol Environ Saf, 2011 Jul;74(5):1195-202.
    PMID: 21419486 DOI: 10.1016/j.ecoenv.2011.02.022
    Abundance and diversity of benthic macroinvertebrates as well as physico-chemical parameters were investigated in five rivers of the Juru River Basin in northern Peninsula Malaysia: Ceruk Tok Kun River (CTKR), Pasir River (PR), Permatang Rawa River (PRR), Kilang Ubi River (KUR), and Juru River (JR). The physico-chemical parameters and calculated water quality index (WQI) were significantly different among the investigated rivers (ANOVA, P<0.05). The WQI classified CTKR, PR, and JR into class III (slightly polluted). However, PRR and KUR fell into class IV (polluted). High diversity and abundance of macroinvertebrates, especially the intolerant taxa, Ephemeroptera, Plecoptera, and Trichoptera, were observed in the least polluted river, CTKR. Decreasing abundance of macroinvertebrates followed the deterioration of river water quality with the least number of the most tolerant taxa collected from PR. On the basis of composition and sensitivity of macroinvertebrates to pollutants in each river, the highest Biological Monitoring Working Party (BMWP) index score of 93 was reported in CTKR (good water quality). BMWP scores in PRR and JR were 38.7 and 20.1, respectively, classifying both of them into "moderate water quality" category. Poor water quality was reported in PR and KUR. The outcome of the multivariate analysis (CCA) was highly satisfactory, explaining 43.32% of the variance for the assemblages of macroinvertebrates as influenced by 19 physical and chemical variables. According to the CCA model, we assert that there were three levels of stresses on macroinvertebrate communities in the investigated rivers: Level 1, characterized of undisturbed or slightly polluted as in the case of CTKR; Level 2, characterized by a lower habitat quality (the JR) compared to the CTKR; and Level 3 showed severe environmental stresses (PRR, PR, and KUR) primarily contributed by agricultural, industrial, and municipal discharges.
    Matched MeSH terms: Rivers/chemistry*
  10. Al-Shami SA, Salmah MR, Hassan AA, Azizah MN
    Environ Monit Assess, 2011 Jun;177(1-4):233-44.
    PMID: 20697808 DOI: 10.1007/s10661-010-1630-1
    Morphological mentum deformities which represent sublethal effect of exposure to different types of pollutants were evaluated in Chironomus spp. larvae inhabiting three polluted rivers of Juru River Basin in northwestern peninsular Malaysia. Using mentum deformity incidences, the modified toxic score index (MTSI) was developed based on Lenat's toxic score index (TSI). The suggested MTSI was compared with TSI in terms of its effectiveness to identify different pollutants including heavy metals. The MTSI showed stronger relationship to total deformity incidence expressed as percentage. Additionally, the multivariate RDA model showed higher capability of MTSI to explain the variations in heavy metal contents of the river sediments. The MTSI was recommended in bioassessment of water and sediment quality using the mentum deformities of Chironomus spp. larvae from aquatic ecosystems receiving anthropogenic, agricultural, or industrial discharges.
    Matched MeSH terms: Rivers/chemistry*
  11. Alam L, Rahman LF, Ahmed MF, Bari MA, Masud MM, Mokhtar MB
    Environ Geochem Health, 2021 May;43(5):2049-2063.
    PMID: 33389458 DOI: 10.1007/s10653-020-00783-0
    Rivers, the main source of the domestic water supply in Malaysia, have been threatened by frequent flooding in recent years. This study aims to assess human health risks associated with exposure to concentrated heavy metals in a flood-prone region of Malaysia and investigate the affected individuals' willingness to participate in managing water resources. Hazard indices and cancer risks associated with water contamination by heavy metals have been assessed following the method prescribed by the US Environmental Protection Agency. Yearly data of heavy metal contamination (Cd, Cr, Pb, Zn, Fe), water quality parameters (DO, BOD, COD, pH), and climatic information (annual rainfall, annual temperature) have been collected from the Department of Environment and Meteorological Department of Malaysia, respectively. The inductively coupled plasma mass spectrometry technique has been used by the department of environment for analyzing heavy metal concentration in river water samples. In this study, data from a stratified random sample of households in the affected region were analyzed, using partial least squares structural equation modeling, to predict the link between individuals' perceptions and attitudes about water resources and their willingness to engage in water management program. The health risk estimation indicated that the hazard index values were below the acceptable limit, representing no non-carcinogenic risk to adults and children residing in the study area via oral intake and dermal adsorption of water. However, the calculated value for cancer risk signified possible carcinogenic risks associated with Pb and Cd. In general, contamination due to pollution and flooding tends to increase in the basin region, and appropriate management is needed. The results identified perceived water quality as a significant factor influencing people's attitudes toward involvement in water management programs. As in many developing countries, there is no legal provision guaranteeing public representation in water management in Malaysia. The conclusion discusses the importance of these for the literature and for informing future policy actions.
    Matched MeSH terms: Rivers/chemistry*
  12. Ali MM, Ali ML, Islam MS, Rahman MZ
    Water Sci Technol, 2018 Mar;77(5-6):1418-1430.
    PMID: 29528329 DOI: 10.2166/wst.2018.016
    This study was conducted to assess the levels of toxic metals like arsenic (As), chromium (Cr), cadmium (Cd), and lead (Pb) in water and sediments of the Pasur River in Bangladesh. The ranges of Cr, As, Cd, Pb in water were 25.76-77.39, 2.76-16.73, 0.42-2.98 and 12.69-42.67 μg/L and in sediments were 20.67-83.70, 3.15-19.97, 0.39-3.17 and 7.34-55.32 mg/kg. The level of studied metals in water samples exceeded the safe limits of drinking water, indicating that water from this river is not safe for drinking and cooking. Certain indices, including pollution load index (PLI) and contamination factor (Cif) were used to assess the ecological risk. The PLI indicated progressive deterioration of sediments by the studied metals. Potential ecological risks of metals in sediment indicated low to considerable risk. However, the Cif values of Cd ranged from 0.86 to 8.37 revealed that the examined sediments were strongly impacted by Cd. Considering the severity of potential ecological risk (PER) for single metal (Eir), the descending order of contaminants was Cd > Pb > As > Cr. According the results, some treatment scheme must formulate and implement by the researchers and related management organizations to save the Pasur River from metals contamination.
    Matched MeSH terms: Rivers/chemistry*
  13. Alizamir M, Kisi O, Ahmed AN, Mert C, Fai CM, Kim S, et al.
    PLoS One, 2020;15(4):e0231055.
    PMID: 32287272 DOI: 10.1371/journal.pone.0231055
    Soil temperature has a vital importance in biological, physical and chemical processes of terrestrial ecosystem and its modeling at different depths is very important for land-atmosphere interactions. The study compares four machine learning techniques, extreme learning machine (ELM), artificial neural networks (ANN), classification and regression trees (CART) and group method of data handling (GMDH) in estimating monthly soil temperatures at four different depths. Various combinations of climatic variables are utilized as input to the developed models. The models' outcomes are also compared with multi-linear regression based on Nash-Sutcliffe efficiency, root mean square error, and coefficient of determination statistics. ELM is found to be generally performs better than the other four alternatives in estimating soil temperatures. A decrease in performance of the models is observed by an increase in soil depth. It is found that soil temperatures at three depths (5, 10 and 50 cm) could be mapped utilizing only air temperature data as input while solar radiation and wind speed information are also required for estimating soil temperature at the depth of 100 cm.
    Matched MeSH terms: Rivers/chemistry
  14. Alkarkhi AF, Ahmad A, Ismail N, Easa AM
    Environ Monit Assess, 2008 Aug;143(1-3):179-86.
    PMID: 17899414
    Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data obtained from two rivers in the Penang State of Malaysia for the concentration of heavy metal ions (As, Cr, Cd, Zn, Cu, Pb, and Hg) using a flame atomic absorption spectrometry (F-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometry (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). MANOVA showed a strong significant difference between the two rivers in terms of heavy metal concentrations in water samples. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used four parameters (Zn, Pb, Cd and Cr) affording 100% correct assignations. Results indicated that the two rivers were different in terms of heavy metals concentrations in water, and the major difference was due to the contribution of Zn. A negative correlation was found between discriminate functions (DF) and Cr and As, whereas positive correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metal concentrations. Correlation matrix between the parameters exhibited a strong evidence of mutual dependence of these metals.
    Matched MeSH terms: Rivers/chemistry*
  15. Alsalahi MA, Latif MT, Ali MM, Dominick D, Khan MF, Mustaffa NI, et al.
    Mar Pollut Bull, 2015 Apr 15;93(1-2):278-83.
    PMID: 25682566 DOI: 10.1016/j.marpolbul.2015.01.011
    This study aims to determine the concentration of sterols used as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. Samples were collected during different seasons through the use of a rotation drum. The analysis of sterols was performed using gas chromatography equipped with a flame ionisation detector (GC-FID). The results showed that the concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L(-1). The total sterol concentration was found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).
    Matched MeSH terms: Rivers/chemistry*
  16. Alsalahi MA, Latif MT, Ali MM, Magam SM, Wahid NB, Khan MF, et al.
    Mar Pollut Bull, 2014 Mar 15;80(1-2):344-50.
    PMID: 24373668 DOI: 10.1016/j.marpolbul.2013.12.019
    This study aims to determine the levels of methylene blue active substances (MBAS) and ethyl violet active substances (EVAS) as anionic surfactants and of disulphine blue active substances (DBAS) as cationic surfactants in the surface microlayer (SML) around an estuarine area using colorimetric methods. The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS and EVAS) with average concentrations of 0.39 and 0.51 μmol L⁻¹, respectively. There were significant between-station differences in surfactant concentrations (p<0.05) with higher concentrations found at the stations near the sea. The concentration of surfactants was higher during the rainy season than the dry season due to the influence of runoff water. Further investigation using total organic carbon (TOC) and total organic nitrogen (TON) shows that there is a significant correlation (p<0.05) between both anionic and cationic surfactants and the TON concentration.
    Matched MeSH terms: Rivers/chemistry*
  17. Ashraf MA, Yusoff I, Yusof M, Alias Y
    Environ Sci Pollut Res Int, 2013 Jul;20(7):4689-710.
    PMID: 23292199 DOI: 10.1007/s11356-012-1423-x
    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.
    Matched MeSH terms: Rivers/chemistry
  18. Baki MA, Shojib MFH, Sehrin S, Chakraborty S, Choudhury TR, Bristy MS, et al.
    Environ Geochem Health, 2020 Feb;42(2):531-543.
    PMID: 31376046 DOI: 10.1007/s10653-019-00386-4
    This study aimed to assess the effects of major ecotoxic heavy metals accumulated in the Buriganga and Turag River systems on the liver, kidney, intestine, and muscle of common edible fish species Puntius ticto, Heteropneustes fossilis, and Channa punctatus and determine the associated health risks. K was the predominant and reported as a major element. A large concentration of Zn was detected in diverse organs of the three edible fishes compared with other metals. Overall, trace metal analysis indicated that all organs (especially the liver and kidney) were under extreme threat because the maximum permissible limit set by different international health organizations was exceeded. The target hazard quotient and target cancer risk due to the trace metal content were the largest for P. ticto. Thus, excessive intake of P. ticto from the rivers Buriganga and Turag could result in chronic risks associated with long-term exposure to contaminants. Histopathological investigations revealed the first detectable indicators of infection and findings of long-term injury in cells, tissues, and organs. Histopathological changes in various tissue structures of fish functioned as key pointers of connection to pollutants, and definite infections and lesion types were established based on biotic pointers of toxic/carcinogenic effects. The analysis of histopathological alterations is a controlling integrative device used to assess pollutants in the environment.
    Matched MeSH terms: Rivers/chemistry*
  19. Camara M, Jamil NR, Abdullah AFB, Hashim RB
    Environ Monit Assess, 2019 Nov 08;191(12):729.
    PMID: 31705319 DOI: 10.1007/s10661-019-7906-1
    Managers of water quality and water monitoring programs are often faced with constraints in terms of budget, time, and laboratory capacity for sample analysis. In such situation, the ideal solution is to reduce the number of sampling sites and/or monitored variables. In this case, selecting appropriate monitoring sites is a challenge. To overcome this problem, this study was conducted to statistically assess and identify the appropriate sampling stations of monitoring network under the monitored parameters. To achieve this goal, two sets of water quality data acquired from two different monitoring networks were used. The hierarchical agglomerative cluster analysis (HACA) were used to group stations with similar characteristics in the networks, the time series analysis was then performed to observe the temporal variation of water quality within the station clusters, and the geo-statistical analysis associated Kendall's coefficient of concordance were finally applied to identify the most appropriate and least appropriate sampling stations. Based on the overall result, five stations were identified in the networks that contribute the most to the knowledge of water quality status of the entire river. In addition, five stations deemed less important were identified and could therefore be considered as redundant in the network. This result demonstrated that geo-statistical technique coupled with Kendall's coefficient of concordance can be a reliable method for water resource managers to identify appropriate sampling sites in a river monitoring network.
    Matched MeSH terms: Rivers/chemistry*
  20. Chui MQ, Thang LY, See HH
    J Chromatogr A, 2017 Jan 20;1481:145-151.
    PMID: 28017568 DOI: 10.1016/j.chroma.2016.12.042
    A new approach based on the integration of the free liquid membrane (FLM) into electrokinetic supercharging (EKS) was demonstrated to be a new powerful tool used in order to enhance online preconcentration efficiency in capillary electrophoresis (CE). A small plug of water immiscible organic solvent was used as a membrane interface during the electrokinetic sample injection step in EKS in order to significantly enhance the analyte stacking efficiency. The new online preconcentration strategy was evaluated for the determination of paraquat and diquat present in the environmental water samples. The optimised FLM-EKS conditions employed were as follows: hydrodynamic injection (HI) of 20mM potassium chloride as leading electrolyte at 50mbar for 75s (3% of the total capillary volume) followed by the HI of tris(2-ethylhexyl) phosphate (TEHP) as FLM at a 1mm length (0.1% of the capillary volume). The sample was injected at 10kV for 360s, followed by the HI of 20mM cetyl trimethylammonium bromide (CTAB) as terminating electrolyte at 50mbar for 50s (2% of the total capillary volume). The separation was performed in 12mM ammonium acetate and 30mM NaCl containing 20% MeOH at +25kV with UV detection at 205nm. Under optimised conditions, the sensitivity was enhanced between 1500- and 1866-fold when compared with the typical HI at 50mbar for 50s. The detection limit of the method for paraquat and diquat was 0.15-0.20ng/mL, with RSDs below 5.5%. Relative recoveries in spiked river water were in the range of 95.4-97.5%. A comparison was also made between the proposed approach with sole preconcentration of the field-enhanced sample injection (FASI) and EKS in the absence of the FLM.
    Matched MeSH terms: Rivers/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links