Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Zheyuan C, Rahman MA, Tao H, Liu Y, Pengxuan D, Yaseen ZM
    Work, 2021;68(3):825-834.
    PMID: 33612525 DOI: 10.3233/WOR-203416
    BACKGROUND: The increasing use of robotics in the work of co-workers poses some new problems in terms of occupational safety and health. In the workplace, industrial robots are being used increasingly. During operations such as repairs, unmanageable, adjustment, and set-up, robots can cause serious and fatal injuries to workers. Collaborative robotics recently plays a rising role in the manufacturing filed, warehouses, mining agriculture, and much more in modern industrial environments. This development advances with many benefits, like higher efficiency, increased productivity, and new challenges like new hazards and risks from the elimination of human and robotic barriers.

    OBJECTIVES: In this paper, the Advanced Human-Robot Collaboration Model (AHRCM) approach is to enhance the risk assessment and to make the workplace involving security robots. The robots use perception cameras and generate scene diagrams for semantic depictions of their environment. Furthermore, Artificial Intelligence (AI) and Information and Communication Technology (ICT) have utilized to develop a highly protected security robot based risk management system in the workplace.

    RESULTS: The experimental results show that the proposed AHRCM method achieves high performance in human-robot mutual adaption and reduce the risk.

    CONCLUSION: Through an experiment in the field of human subjects, demonstrated that policies based on the proposed model improved the efficiency of the human-robot team significantly compared with policies assuming complete human-robot adaptation.

    Matched MeSH terms: Robotics
  2. Zhang G, Jing W, Tao H, Rahman MA, Salih SQ, Al-Saffar A, et al.
    Work, 2021;68(3):935-943.
    PMID: 33612535 DOI: 10.3233/WOR-203427
    BACKGROUND: Human-Robot Interaction (HRI) has become a prominent solution to improve the robustness of real-time service provisioning through assisted functions for day-to-day activities. The application of the robotic system in security services helps to improve the precision of event detection and environmental monitoring with ease.

    OBJECTIVES: This paper discusses activity detection and analysis (ADA) using security robots in workplaces. The application scenario of this method relies on processing image and sensor data for event and activity detection. The events that are detected are classified for its abnormality based on the analysis performed using the sensor and image data operated using a convolution neural network. This method aims to improve the accuracy of detection by mitigating the deviations that are classified in different levels of the convolution process.

    RESULTS: The differences are identified based on independent data correlation and information processing. The performance of the proposed method is verified for the three human activities, such as standing, walking, and running, as detected using the images and sensor dataset.

    CONCLUSION: The results are compared with the existing method for metrics accuracy, classification time, and recall.

    Matched MeSH terms: Robotics
  3. Zayer, Iman, Aris, I.B., Marhaban, M.H, Ishak, A.J
    MyJurnal
    The new millennium witnessed increasing attention to the field of robotics, especially the development of humanoid bipedal robot. Attention is noticed from the increasing number of publications as a result of a multitude of humanoid projects for commercial and academic goals. This paper briefly visits the recent activities in this field, highlighting the importance and motivation behind adopting bipedal humanoid projects, particularly underlining biologically inspired design concept, bipedal locomotion and communication. Ultimately, emphasising on power-efficient design. The problem of endurance and effective duty cycle were presented. Finally, potential future application for the humanoid robot was briefly listed.
    Matched MeSH terms: Robotics
  4. Zawiah Kassim, Fauziah Ahmad, Rusnaini Mustapha Kamar, Karis Misiran
    MyJurnal
    Safety and feasibility of transoral robotic surgery (TORS) in adults for otolaryngology surgery,
    mainly in the treatment of oropharyngeal carcinoma and obstructive sleep apnoea has already
    been established several years ago. However, less is known with respect to the role and safety
    of TORS for otolaryngology surgery in the paediatric age group and its description in the
    literature is currently insufficient. As paediatric patients are unique in their anatomy, physiology
    and pharmacological kinetic, special attention and consideration has to be applied when using
    TORS, hence this increases the perioperative challenges. Herewith we present our experience
    in anaesthetising a paediatric patient for TORS adenotonsillectomy which is the first not only
    in our centre but in Malaysia. Our major obstacle was the limited airway access as the area of
    concern was shared by the anaesthesiologist, surgeon and also the robotic system.
    Haemodynamic stabilisation was a challenge compared to the conventional method as the
    operative time increased due to robot docking time and the new surgical learning process. In
    our opinion, the key point for the success of TORS adenotonsillectomy in paediatric patients is
    good communication and teamwork between all personnel involved in the surgery.
    Matched MeSH terms: Robotics
  5. Zakaria SM, Visvanathan R, Kamarudin K, Yeon AS, Md Shakaff AY, Zakaria A, et al.
    Sensors (Basel), 2015;15(12):30894-912.
    PMID: 26690175 DOI: 10.3390/s151229834
    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.
    Matched MeSH terms: Robotics
  6. Zafar F, Malik SA, Ali T, Daraz A, Afzal AR, Bhatti F, et al.
    PLoS One, 2024;19(2):e0298624.
    PMID: 38354203 DOI: 10.1371/journal.pone.0298624
    In this paper, we propose two different control strategies for the position control of the ball of the ball and beam system (BBS). The first control strategy uses the proportional integral derivative-second derivative with a proportional integrator PIDD2-PI. The second control strategy uses the tilt integral derivative with filter (TID-F). The designed controllers employ two distinct metaheuristic computation techniques: grey wolf optimization (GWO) and whale optimization algorithm (WOA) for the parameter tuning. We evaluated the dynamic and steady-state performance of the proposed control strategies using four performance indices. In addition, to analyze the robustness of proposed control strategies, a comprehensive comparison has been performed with a variety of controllers, including tilt integral-derivative (TID), fractional order proportional integral derivative (FOPID), integral-proportional derivative (I-PD), proportional integral-derivative (PI-D), and proportional integral proportional derivative (PI-PD). By comparing different test cases, including the variation in the parameters of the BBS with disturbance, we examine step response, set point tracking, disturbance rejection analysis, and robustness of proposed control strategies. The comprehensive comparison of results shows that WOA-PIDD2-PI-ISE and GWO-TID-F- ISE perform superior. Moreover, the proposed control strategies yield oscillation-free, stable, and quick response, which confirms the robustness of the proposed control strategies to the disturbance, parameter variation of BBS, and tracking performance. The practical implementation of the proposed controllers can be in the field of under actuated mechanical systems (UMS), robotics and industrial automation. The proposed control strategies are successfully tested in MATLAB simulation.
    Matched MeSH terms: Robotics*
  7. Yap HJ, Taha Z, Dawal SZ, Chang SW
    PLoS One, 2014;9(10):e109692.
    PMID: 25360663 DOI: 10.1371/journal.pone.0109692
    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.
    Matched MeSH terms: Robotics/methods*
  8. Yang T, Xiao Y, Zhang Z, Liang Y, Li G, Zhang M, et al.
    Sci Rep, 2018 09 28;8(1):14518.
    PMID: 30266999 DOI: 10.1038/s41598-018-32757-9
    Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system including power supply and wireless communication system. Without any motors, the movements of the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties including large deformation and high energy density. Reinforcement learning is used to optimize the control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per second). The design principle behind the structure and the control of the robot can be potentially useful in guiding device designs for demanding applications such as flexible devices and soft robots.
    Matched MeSH terms: Robotics/instrumentation*
  9. Yakub F, Md Khudzari AZ, Mori Y
    Int J Rehabil Res, 2014 Mar;37(1):9-21.
    PMID: 24126254 DOI: 10.1097/MRR.0000000000000035
    This paper presents and studies various selected literature primarily from conference proceedings, journals and clinical tests of the robotic, mechatronics, neurology and biomedical engineering of rehabilitation robotic systems. The present paper focuses of three main categories: types of rehabilitation robots, key technologies with current issues and future challenges. Literature on fundamental research with some examples from commercialized robots and new robot development projects related to rehabilitation are introduced. Most of the commercialized robots presented in this paper are well known especially to robotics engineers and scholars in the robotic field, but are less known to humanities scholars. The field of rehabilitation robot research is expanding; in light of this, some of the current issues and future challenges in rehabilitation robot engineering are recalled, examined and clarified with future directions. This paper is concluded with some recommendations with respect to rehabilitation robots.
    Matched MeSH terms: Robotics/instrumentation; Robotics/trends*
  10. Yahya S, Moghavvemi M, Almurib HA
    Sensors (Basel), 2012;12(6):6869-92.
    PMID: 22969326 DOI: 10.3390/s120606869
    Research on joint torque reduction in robot manipulators has received considerable attention in recent years. Minimizing the computational complexity of torque optimization and the ability to calculate the magnitude of the joint torque accurately will result in a safe operation without overloading the joint actuators. This paper presents a mechanical design for a three dimensional planar redundant manipulator with the advantage of the reduction in the number of motors needed to control the joint angle, leading to a decrease in the weight of the manipulator. Many efforts have been focused on decreasing the weight of manipulators, such as using lightweight joints design or setting the actuators at the base of the manipulator and using tendons for the transmission of power to these joints. By using the design of this paper, only three motors are needed to control any n degrees of freedom in a three dimensional planar redundant manipulator instead of n motors. Therefore this design is very effective to decrease the weight of the manipulator as well as the number of motors needed to control the manipulator. In this paper, the torque of all the joints are calculated for the proposed manipulator (with three motors) and the conventional three dimensional planar manipulator (with one motor for each degree of freedom) to show the effectiveness of the proposed manipulator for decreasing the weight of the manipulator and minimizing driving joint torques.
    Matched MeSH terms: Robotics
  11. Yahaya MR, Hj Razali MH, Abu Bakar CA, Ismail WI, Muda WM, Mat N, et al.
    Pak J Biol Sci, 2014 Jan 01;17(1):141-5.
    PMID: 24783795
    This alkaloid automated removal machine was developed at Instrumentation Laboratory, Universiti Sultan Zainal Abidin Malaysia that purposely for removing the alkaloid toxicity from Dioscorea hispida (DH) tuber. It is a poisonous plant where scientific study has shown that its tubers contain toxic alkaloid constituents, dioscorine. The tubers can only be consumed after it poisonous is removed. In this experiment, the tubers are needed to blend as powder form before inserting into machine basket. The user is need to push the START button on machine controller for switching the water pump ON by then creating turbulence wave of water in machine tank. The water will stop automatically by triggering the outlet solenoid valve. The powders of tubers are washed for 10 minutes while 1 liter of contaminated water due toxin mixture is flowing out. At this time, the controller will automatically triggered inlet solenoid valve and the new water will flow in machine tank until achieve the desire level that which determined by ultra sonic sensor. This process will repeated for 7 h and the positive result is achieved and shows it significant according to the several parameters of biological character ofpH, temperature, dissolve oxygen, turbidity, conductivity and fish survival rate or time. From that parameter, it also shows the positive result which is near or same with control water and assuming was made that the toxin is fully removed when the pH of DH powder is near with control water. For control water, the pH is about 5.3 while water from this experiment process is 6.0 and before run the machine the pH of contaminated water is about 3.8 which are too acid. This automated machine can save time for removing toxicity from DH compared with a traditional method while less observation of the user.
    Matched MeSH terms: Robotics/instrumentation*
  12. Wei H, Rahman MA, Hu X, Zhang L, Guo L, Tao H, et al.
    Work, 2021;68(3):845-852.
    PMID: 33612527 DOI: 10.3233/WOR-203418
    BACKGROUND: The selection of orders is the method of gathering the parts needed to assemble the final products from storage sites. Kitting is the name of a ready-to-use package or a parts kit, flexible robotic systems will significantly help the industry to improve the performance of this activity. In reality, despite some other limitations on the complexity of components and component characteristics, the technological advances in recent years in robotics and artificial intelligence allows the treatment of a wide range of items.

    OBJECTIVE: In this article, we study the robotic kitting system with a Robotic Mounted Rail Arm System (RMRAS), which travels narrowly to choose the elements.

    RESULTS: The objective is to evaluate the efficiency of a robotic kitting system in cycle times through modeling of the elementary kitting operations that the robot performs (pick and room, move, change tools, etc.). The experimental results show that the proposed method enhances the performance and efficiency ratio when compared to other existing methods.

    CONCLUSION: This study with the manufacturer can help him assess the robotic area performance in a given design (layout and picking a policy, etc.) as part of an ongoing project on automation of kitting operations.

    Matched MeSH terms: Robotics
  13. Wan Ishak, W.I., Kit, W.H., Awwal, M. A.
    MyJurnal
    This paper describes the design and development of harvesting system for the gantry system to harvest eggplants. For this purpose, the harvesting robot was successfully designed and fabricated for the gantry system to harvest eggplants. The operation of the harvester was controlled by Programmable Logic Controller (PLC). Basically, the limit switches, DC motor, and relay are connected to the PLC. Meanwhile, a PLC ladder diagram was designed and developed to control the operation of the eggplant harvester. A visual basic programme was developed to interface the harvester with a greenhouse gantry control system. A videogrammetry method was employed to calculate the distance between the stems of eggplants and the cutter of robot end effector. The end effector used electric as its power source and it was controlled via Programmable Logic Controller (PLC). Visual Basic Programme was developed to interface the harvester with the gantry control system. The accuracy of the videogrammetry was tested to be 67.2% for X-axis, 88.2% for Y-axis and 84.7% for Z-axis. Meanwhile, the speed of the end effector for harvester is 2.4 km/h and it could lift up to 55 cm. In order to determine detachment force of eggplant, 16 samples of mature eggplants were tested in a greenhouse, and as a result, more than 22.76 N force was needed to detach a mature eggplant inside the gantry system.
    Matched MeSH terms: Robotics
  14. Timmis J, Ismail AR, Bjerknes JD, Winfield AF
    Biosystems, 2016 Aug;146:60-76.
    PMID: 27178784 DOI: 10.1016/j.biosystems.2016.04.001
    Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots.
    Matched MeSH terms: Robotics*
  15. Teo J, Abbass HA
    Evol Comput, 2004;12(3):355-94.
    PMID: 15355605
    In this paper, we investigate the use of a self-adaptive Pareto evolutionary multi-objective optimization (EMO) approach for evolving the controllers of virtual embodied organisms. The objective of this paper is to demonstrate the trade-off between quality of solutions and computational cost. We show empirically that evolving controllers using the proposed algorithm incurs significantly less computational cost when compared to a self-adaptive weighted sum EMO algorithm, a self-adaptive single-objective evolutionary algorithm (EA) and a hand-tuned Pareto EMO algorithm. The main contribution of the self-adaptive Pareto EMO approach is its ability to produce sufficiently good controllers with different locomotion capabilities in a single run, thereby reducing the evolutionary computational cost and allowing the designer to explore the space of good solutions simultaneously. Our results also show that self-adaptation was found to be highly beneficial in reducing redundancy when compared against the other algorithms. Moreover, it was also shown that genetic diversity was being maintained naturally by virtue of the system's inherent multi-objectivity.
    Matched MeSH terms: Robotics
  16. Teh GC
    Urol Oncol, 2010 Nov-Dec;28(6):682-5.
    PMID: 21062652 DOI: 10.1016/j.urolonc.2010.03.017
    With maturing functional and oncologic outcomes data, open partial nephrectomy (OPN) has become the standard of care for T1a renal tumor. Laparoscopic approach can provide a speedier recovery with less blood loss and postoperative pain. Presuming adequate laparoscopic expertise, laparoscopic partial nephrectomy can provide equivalent oncologic outcome as for OPN albeit with higher urologic complications rate and longer warm ischemia time. With refinement of technique and use of robotic assistant, the shortcomings of laparoscopic approach can be further reduced. This article is a mini-review on the current status of laparoscopic approach to partial nephrectomy in the management of small renal mass.
    Matched MeSH terms: Robotics
  17. Tao H, Rahman MA, Al-Saffar A, Zhang R, Salih SQ, Zain JM, et al.
    Work, 2021;68(3):853-861.
    PMID: 33612528 DOI: 10.3233/WOR-203419
    BACKGROUND: Nowadays, workplace violence is found to be a mental health hazard and considered a crucial topic. The collaboration between robots and humans is increasing with the growth of Industry 4.0. Therefore, the first problem that must be solved is human-machine security. Ensuring the safety of human beings is one of the main aspects of human-robotic interaction. This is not just about preventing collisions within a shared space among human beings and robots; it includes all possible means of harm for an individual, from physical contact to unpleasant or dangerous psychological effects.

    OBJECTIVE: In this paper, Non-linear Adaptive Heuristic Mathematical Model (NAHMM) has been proposed for the prevention of workplace violence using security Human-Robot Collaboration (HRC). Human-Robot Collaboration (HRC) is an area of research with a wide range of up-demands, future scenarios, and potential economic influence. HRC is an interdisciplinary field of research that encompasses cognitive sciences, classical robotics, and psychology.

    RESULTS: The robot can thus make the optimal decision between actions that expose its capabilities to the human being and take the best steps given the knowledge that is currently available to the human being. Further, the ideal policy can be measured carefully under certain observability assumptions.

    CONCLUSION: The system is shown on a collaborative robot and is compared to a state of the art security system. The device is experimentally demonstrated. The new system is being evaluated qualitatively and quantitatively.

    Matched MeSH terms: Robotics
  18. Tao H, Rahman MA, Jing W, Li Y, Li J, Al-Saffar A, et al.
    Work, 2021;68(3):903-912.
    PMID: 33720867 DOI: 10.3233/WOR-203424
    BACKGROUND: Human-robot interaction (HRI) is becoming a current research field for providing granular real-time applications and services through physical observation. Robotic systems are designed to handle the roles of humans and assist them through intrinsic sensing and commutative interactions. These systems handle inputs from multiple sources, process them, and deliver reliable responses to the users without delay. Input analysis and processing is the prime concern for the robotic systems to understand and resolve the queries of the users.

    OBJECTIVES: In this manuscript, the Interaction Modeling and Classification Scheme (IMCS) is introduced to improve the accuracy of HRI. This scheme consists of two phases, namely error classification and input mapping. In the error classification process, the input is analyzed for its events and conditional discrepancies to assign appropriate responses in the input mapping phase. The joint process is aided by a linear learning model to analyze the different conditions in the event and input detection.

    RESULTS: The performance of the proposed scheme shows that it is capable of improving the interaction accuracy by reducing the ratio of errors and interaction response by leveraging the information extraction from the discrete and successive human inputs.

    CONCLUSION: The fetched data are analyzed by classifying the errors at the initial stage to achieve reliable responses.

    Matched MeSH terms: Robotics
  19. Tang, S.H., Khaksar, W., Ismail, N.B., Ariffin, M.K.A.
    MyJurnal
    The ability of a robot to plan its own motion seems pivotal to its autonomy, and that is why the motion planning has become part and parcel of modern intelligent robotics. In this paper, about 100 research are reviewed and briefly described to identify and classify the amount of the existing work for each motion planning approach. Meanwhile, around 200 research were used to determine the percentage of the application of each approach. The paper includes comparative tables and charts showing the application frequency of each approach in the last 30 years. Finally, some open areas and challenging topics are presented based on the reviewed papers.
    Matched MeSH terms: Robotics
  20. Syahrul Affandi Saidi, Beh, Jun Long, Mohd Sharizan Md Sarip, Wan Azani Mustafa
    MyJurnal
    This article presents a Wall Climbing Robot (WCR) that able to move on ferromagnetic vertical surface to carry out visual inspection process. Visual inspection process is important in the industry to check the condition of storage tank, surface of building, piping or equipment thus can prevents structures collapsing or explosion which would bring a huge loss to the company. Moreover, most of the structures nowadays is expose under the sun and rain, corrosion and cracks could easily occur on the surface after exposing under sunlight and rain a long period of time. Therefore the periodic visual inspection process need to be carry out to detect the damaged occur on the surface of the structure and take action at the fastest time to ensure the safety of the structures and extend the lifespan of the structures. With the well maintenance to the structures, the condition of the structures is monitored and the lifespan is longer. The risk of collapse of the building is decrease by a large margin. Normally, the periodic visual inspection process is performed by operator. Sometime the temporary scaffolding is needed to reach the higher place to carry out the inspection. However, this method create a hazardous environment to the operator and cause the safety of the operator threatened. Therefore, the proposed WCR could help operator to work at the hazardous environment. The permanent magnet is used to provide adhesion for WCR, thus WCR able to move on vertical ferromagnetic surface. The WCR is controlled by operator via wireless remote to reach the higher place or the hazardous environment. The operator then can stream the on the real time images via web browser which connected to the same network with the WCR. Hence, the condition of the surface can be observed.
    Matched MeSH terms: Robotics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links