Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. A'qilah Ahmad Dahalan, Azali Saudi, Jumat Sulaiman
    MyJurnal
    Mobile robots often have to discover a path of collision-free towards a specific goal point in their environment. We are trying to resolve the mobile robot problem iteratively by means of numerical technique. It is built on a method of potential field that count on the use of Laplace’s equation in the mobile robot’s configuration space to constrain/which reduces the generation of a potential function over regions. This paper proposed an iterative approach in solving robot path finding problem known as Accelerated Over-Relaxation (AOR). The experiment shows that these suggested approach can establish a smooth path between the starting and goal points by engaging with a finite-difference technique. The simulation results also show that a more rapidly solution with smoother path than the previous work is achieved via this numerical approach.
    Matched MeSH terms: Robotics
  2. Mehbodniya AH, Moghavvemi M, Narayanan V, Waran V
    World Neurosurg, 2019 Feb;122:e449-e454.
    PMID: 30347306 DOI: 10.1016/j.wneu.2018.10.069
    BACKGROUND: Navigation (image guidance) is an essential tool in modern neurosurgery, and most surgeons use an optical tracking system. Although the technology is accurate and reliable, one often is confronted by line of sight issues that interrupt the flow of an operation. There has been feedback on the matter, but the actual problem has not been accurately quantified, therefore making this the primary aim of this study. It is particularly important given that robotic technology is gradually making its way into neurosurgery and most of these devices depend on optical navigation when procedures are being conducted.

    METHODS: In this study, the frequency and causes of line of sight issues is assessed using recordings of Navigation probe locations and its synchronised video recordings.

    RESULTS: The mentioned experiment conducted for a series of 15 neurosurgical operations. This issue occured in all these surgeries except one. Maximum duration of issue presisting reached up to 56% of the navigation usage time.

    CONCLUSIONS: The arrangment of staff and equipment is a key factor in avoiding this issue.

    Matched MeSH terms: Robotics
  3. Sahabudin RM, Arni T, Ashani N, Arumuga K, Rajenthran S, Murali S, et al.
    World J Urol, 2006 Jun;24(2):161-4.
    PMID: 16607550
    Robotic surgery was started in the Department of Urology, Hospital Kuala Lumpur, in April 2004. We present our experience in developing the program and report the results of our first 50 cases of robotic radical prostatectomy. A three-arm da Vinci robotic system was installed in our hospital in March 2004. Prior to installation, the surgeons underwent training at various centers in the United States and Paris. The operating theatre was renovated to house the system. Subsequently, the initial few cases were done with the help of proctors. Data were prospectively collected on all patients who underwent robot-assisted radical prostatectomy for localized carcinoma of the prostate. Fifty patients underwent robot assisted radical prostatectomy from March 2004 to June 2005. Their ages ranged from 52 to 75 years, (average age 60.2 years). PSA levels ranged from 2.5 to 35 ng/ml (mean 10.6 ng/ml). Prostate volume ranged from 18 to 130 cc (average 32.4 cc). Average operating time for the first 20 cases was 4 h and for the next 30 cases was 2.5 h. Patients were discharged 1-3 days post-operatively. Catheters were removed on the fifth day following a cystogram. The positive margin rate as defined by the presence of cancer cells at the inked margin was 30%. Twenty-one patients had T1c disease and one had T1b on clinical staging. Of these, two were apical margin positive. Twenty-six patients had T2 disease and eight of them were apical margin positive. Two patients had T3 disease, one of whom was apical margin positive. Five patients (10%) had PSA recurrence. Five patients had a poorly differentiated carcinoma and the rest had Gleason 6 or 7. Eighty percent of the patients were continent on follow-up at 3 months. Of those who were potent before the surgery, 50% were potent at 3-6 months. The robotic surgery program was successfully implemented at our center on the lines of a structured program, developed at Vattikuti Urology Institute (VUI). We succeeded in creating a team and safely implemented the robotic program in our system. Adequate funding and extensive training followed by a short term proctoring are essential for this implementation.
    Matched MeSH terms: Robotics*
  4. Zhang G, Jing W, Tao H, Rahman MA, Salih SQ, Al-Saffar A, et al.
    Work, 2021;68(3):935-943.
    PMID: 33612535 DOI: 10.3233/WOR-203427
    BACKGROUND: Human-Robot Interaction (HRI) has become a prominent solution to improve the robustness of real-time service provisioning through assisted functions for day-to-day activities. The application of the robotic system in security services helps to improve the precision of event detection and environmental monitoring with ease.

    OBJECTIVES: This paper discusses activity detection and analysis (ADA) using security robots in workplaces. The application scenario of this method relies on processing image and sensor data for event and activity detection. The events that are detected are classified for its abnormality based on the analysis performed using the sensor and image data operated using a convolution neural network. This method aims to improve the accuracy of detection by mitigating the deviations that are classified in different levels of the convolution process.

    RESULTS: The differences are identified based on independent data correlation and information processing. The performance of the proposed method is verified for the three human activities, such as standing, walking, and running, as detected using the images and sensor dataset.

    CONCLUSION: The results are compared with the existing method for metrics accuracy, classification time, and recall.

    Matched MeSH terms: Robotics
  5. Tao H, Rahman MA, Al-Saffar A, Zhang R, Salih SQ, Zain JM, et al.
    Work, 2021;68(3):853-861.
    PMID: 33612528 DOI: 10.3233/WOR-203419
    BACKGROUND: Nowadays, workplace violence is found to be a mental health hazard and considered a crucial topic. The collaboration between robots and humans is increasing with the growth of Industry 4.0. Therefore, the first problem that must be solved is human-machine security. Ensuring the safety of human beings is one of the main aspects of human-robotic interaction. This is not just about preventing collisions within a shared space among human beings and robots; it includes all possible means of harm for an individual, from physical contact to unpleasant or dangerous psychological effects.

    OBJECTIVE: In this paper, Non-linear Adaptive Heuristic Mathematical Model (NAHMM) has been proposed for the prevention of workplace violence using security Human-Robot Collaboration (HRC). Human-Robot Collaboration (HRC) is an area of research with a wide range of up-demands, future scenarios, and potential economic influence. HRC is an interdisciplinary field of research that encompasses cognitive sciences, classical robotics, and psychology.

    RESULTS: The robot can thus make the optimal decision between actions that expose its capabilities to the human being and take the best steps given the knowledge that is currently available to the human being. Further, the ideal policy can be measured carefully under certain observability assumptions.

    CONCLUSION: The system is shown on a collaborative robot and is compared to a state of the art security system. The device is experimentally demonstrated. The new system is being evaluated qualitatively and quantitatively.

    Matched MeSH terms: Robotics
  6. Zheyuan C, Rahman MA, Tao H, Liu Y, Pengxuan D, Yaseen ZM
    Work, 2021;68(3):825-834.
    PMID: 33612525 DOI: 10.3233/WOR-203416
    BACKGROUND: The increasing use of robotics in the work of co-workers poses some new problems in terms of occupational safety and health. In the workplace, industrial robots are being used increasingly. During operations such as repairs, unmanageable, adjustment, and set-up, robots can cause serious and fatal injuries to workers. Collaborative robotics recently plays a rising role in the manufacturing filed, warehouses, mining agriculture, and much more in modern industrial environments. This development advances with many benefits, like higher efficiency, increased productivity, and new challenges like new hazards and risks from the elimination of human and robotic barriers.

    OBJECTIVES: In this paper, the Advanced Human-Robot Collaboration Model (AHRCM) approach is to enhance the risk assessment and to make the workplace involving security robots. The robots use perception cameras and generate scene diagrams for semantic depictions of their environment. Furthermore, Artificial Intelligence (AI) and Information and Communication Technology (ICT) have utilized to develop a highly protected security robot based risk management system in the workplace.

    RESULTS: The experimental results show that the proposed AHRCM method achieves high performance in human-robot mutual adaption and reduce the risk.

    CONCLUSION: Through an experiment in the field of human subjects, demonstrated that policies based on the proposed model improved the efficiency of the human-robot team significantly compared with policies assuming complete human-robot adaptation.

    Matched MeSH terms: Robotics
  7. Wei H, Rahman MA, Hu X, Zhang L, Guo L, Tao H, et al.
    Work, 2021;68(3):845-852.
    PMID: 33612527 DOI: 10.3233/WOR-203418
    BACKGROUND: The selection of orders is the method of gathering the parts needed to assemble the final products from storage sites. Kitting is the name of a ready-to-use package or a parts kit, flexible robotic systems will significantly help the industry to improve the performance of this activity. In reality, despite some other limitations on the complexity of components and component characteristics, the technological advances in recent years in robotics and artificial intelligence allows the treatment of a wide range of items.

    OBJECTIVE: In this article, we study the robotic kitting system with a Robotic Mounted Rail Arm System (RMRAS), which travels narrowly to choose the elements.

    RESULTS: The objective is to evaluate the efficiency of a robotic kitting system in cycle times through modeling of the elementary kitting operations that the robot performs (pick and room, move, change tools, etc.). The experimental results show that the proposed method enhances the performance and efficiency ratio when compared to other existing methods.

    CONCLUSION: This study with the manufacturer can help him assess the robotic area performance in a given design (layout and picking a policy, etc.) as part of an ongoing project on automation of kitting operations.

    Matched MeSH terms: Robotics
  8. Guangnan Z, Tao H, Rahman MA, Yao L, Al-Saffar A, Meng Q, et al.
    Work, 2021;68(3):871-879.
    PMID: 33612530 DOI: 10.3233/WOR-203421
    BACKGROUND: An isolated robot must take account of uncertainty in its world model and adapt its activities to take into account such as uncertainty. In the same way, a robot interaction with security and privacy issues (RISAPI) with people has to account for its confusion about the human internal state, as well as how this state will shift as humans respond to the robot.

    OBJECTIVES: This paper discusses RISAPI of our original work in the field, which shows how probabilistic planning and system theory algorithms in workplace robotic systems that work with people can allow for that reasoning using a security robot system. The problem is a general way as an incomplete knowledge 2-player game.

    RESULTS: In this general framework, the various hypotheses and these contribute to thrilling and complex robot behavior through real-time interaction, which transforms actual human subjects into a spectrum of production systems, robots, and care facilities.

    CONCLUSION: The models of the internal human situation, in which robots can be designed efficiently, are limited, and achieve optimal computational intractability in large, high-dimensional spaces. To achieve this, versatile, lightweight portrayals of the human inner state and modern algorithms offer great hope for reasoning.

    Matched MeSH terms: Robotics
  9. Tao H, Rahman MA, Jing W, Li Y, Li J, Al-Saffar A, et al.
    Work, 2021;68(3):903-912.
    PMID: 33720867 DOI: 10.3233/WOR-203424
    BACKGROUND: Human-robot interaction (HRI) is becoming a current research field for providing granular real-time applications and services through physical observation. Robotic systems are designed to handle the roles of humans and assist them through intrinsic sensing and commutative interactions. These systems handle inputs from multiple sources, process them, and deliver reliable responses to the users without delay. Input analysis and processing is the prime concern for the robotic systems to understand and resolve the queries of the users.

    OBJECTIVES: In this manuscript, the Interaction Modeling and Classification Scheme (IMCS) is introduced to improve the accuracy of HRI. This scheme consists of two phases, namely error classification and input mapping. In the error classification process, the input is analyzed for its events and conditional discrepancies to assign appropriate responses in the input mapping phase. The joint process is aided by a linear learning model to analyze the different conditions in the event and input detection.

    RESULTS: The performance of the proposed scheme shows that it is capable of improving the interaction accuracy by reducing the ratio of errors and interaction response by leveraging the information extraction from the discrete and successive human inputs.

    CONCLUSION: The fetched data are analyzed by classifying the errors at the initial stage to achieve reliable responses.

    Matched MeSH terms: Robotics
  10. Patil NN, Mottrie A, Sundaram B, Patel VR
    Urology, 2008 Jul;72(1):47-50; discussion 50.
    PMID: 18384858 DOI: 10.1016/j.urology.2007.12.097
    To report the collective experience of three multinational institutions with the use of robotics to evaluate and treat complex distal ureteral obstruction.
    Matched MeSH terms: Robotics/methods*
  11. Sundaram BM, Kalidasan G, Hemal AK
    Urology, 2006 May;67(5):970-3.
    PMID: 16698357
    To describe a technique of robotic repair of vesicovaginal fistula (VVF) and present our experience with 5 such patients.
    Matched MeSH terms: Robotics*
  12. Teh GC
    Urol Oncol, 2010 Nov-Dec;28(6):682-5.
    PMID: 21062652 DOI: 10.1016/j.urolonc.2010.03.017
    With maturing functional and oncologic outcomes data, open partial nephrectomy (OPN) has become the standard of care for T1a renal tumor. Laparoscopic approach can provide a speedier recovery with less blood loss and postoperative pain. Presuming adequate laparoscopic expertise, laparoscopic partial nephrectomy can provide equivalent oncologic outcome as for OPN albeit with higher urologic complications rate and longer warm ischemia time. With refinement of technique and use of robotic assistant, the shortcomings of laparoscopic approach can be further reduced. This article is a mini-review on the current status of laparoscopic approach to partial nephrectomy in the management of small renal mass.
    Matched MeSH terms: Robotics
  13. Sundram M
    Urol Oncol, 2010 Nov-Dec;28(6):677-81.
    PMID: 21062651 DOI: 10.1016/j.urolonc.2010.03.003
    Matched MeSH terms: Robotics/trends*; Robotics/statistics & numerical data*
  14. Ahmad FA, Ramli AR, Samsudin K, Hashim SJ
    ScientificWorldJournal, 2014;2014:153162.
    PMID: 24949491 DOI: 10.1155/2014/153162
    Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.
    Matched MeSH terms: Robotics*
  15. Al-Abdullah KI, Lim CP, Najdovski Z, Yassin W
    Int J Med Robot, 2019 Jun;15(3):e1989.
    PMID: 30721570 DOI: 10.1002/rcs.1989
    BACKGROUND: This paper presents a model-based bone milling state identification method that provides intraoperative bone quality information during robotic bone milling. The method helps surgeons identify bone layer transitions during bone milling.

    METHODS: On the basis of a series of bone milling experiments with commercial artificial bones, an artificial neural network force model is developed to estimate the milling force of different bone densities as a function of the milling feed rate and spindle speed. The model estimations are used to identify the bone density at the cutting zone by comparing the actual milling force with the estimated one.

    RESULTS: The verification experiments indicate the ability of the proposed method to distinguish between one cortical and two cancellous bone densities.

    CONCLUSIONS: The significance of the proposed method is that it can be used to discriminate a set of different bone density layers for a range of the milling feed rate and spindle speed.

    Matched MeSH terms: Robotics
  16. Hassan, Ahmed, Abdul Shukor Juraimi, Muhammad Saiful Ahmad Hamdani
    MyJurnal
    Agriculture is one of the latest industries that uses robotic technologies. Cultivation of crops
    with high yield and quality can be enhanced when technological sustenance is involved. Pests are
    nuisance and cannot be completely eliminated, but with effective control and management. damages
    caused by pests could be minimized below economic threshold. Automation in agriculture is stable and
    accurate and is mainly incorporated in mechanized farming system. However its numerous application in
    different agricultural practices is not well noticed. Hence this paper attempts to provide profound
    awareness on robotic technology in agriculture. Robots could have a specific or multiple functions and,
    most commonly, they are made up of five basic components; sensors, effectors, actuators, controller and
    arms. Use of automation in weeding, weed mapping, micro spraying, seeding, irrigation and harvesting
    are progressions which promote sustainable agriculture and food security. In future, solar robots with
    battery inverter may be invented.
    Matched MeSH terms: Robotics
  17. Farah Kamil, Tang, S.H., Zulkifli, N., Ahmad, S.A., Khaksar, W.
    MyJurnal
    Robotic navigation has remained an open issue through the last two decades. Mobile robot
    is required to navigate safely to goal location in presence of obstacles. Recently the use of mobile
    robot in unknown dynamic environment has significantly increased. The aim of this paper is to offer a
    comprehensive review over different approaches to mobile robots in dynamic environments,
    particularly on how they solve many issues that face the researchers recently. This paper also explains
    the advantages and drawbacks of each reviewed paper. The authors decide to categorize these articles
    based on the entire content of each paper into ten common challenges which have been discussed in
    this paper, including: traveling distance, traveling time, safety, motion control, smooth path, future
    prediction, stabilization, competence, precision, and low computation cost. Finally, some open areas
    and challenging topics are offered according to the articles mentioned.
    Matched MeSH terms: Robotics
  18. Zayer, Iman, Aris, I.B., Marhaban, M.H, Ishak, A.J
    MyJurnal
    The new millennium witnessed increasing attention to the field of robotics, especially the development of humanoid bipedal robot. Attention is noticed from the increasing number of publications as a result of a multitude of humanoid projects for commercial and academic goals. This paper briefly visits the recent activities in this field, highlighting the importance and motivation behind adopting bipedal humanoid projects, particularly underlining biologically inspired design concept, bipedal locomotion and communication. Ultimately, emphasising on power-efficient design. The problem of endurance and effective duty cycle were presented. Finally, potential future application for the humanoid robot was briefly listed.
    Matched MeSH terms: Robotics
  19. Kapur A, Kapur V
    Malays J Med Sci, 2020 May;27(3):143-149.
    PMID: 32684815 DOI: 10.21315/mjms2020.27.3.15
    Technological advances in the field of surgery and medicine have increased the demand for minimally invasive surgery manifold. Robot assisted surgery is gaining popularity, overcoming the flaws of laparoscopic techniques; with improved surgical precision. The conservative nature of anaesthesia care has to face the challenges with respect to patient positioning, bulkiness of the operating system and being positioned far and away from the patient. Anaesthesiologist's commitment to be the 'best man' for the patient during the perioperative period mandates him to familiarise with these challenges of robot assisted surgical system and provide best possible anaesthetic care and ensure patient safety. In this article, a systematic review of the development of surgical robots and the consideration of unique anaesthetic concerns thereof have been undertaken as any new technology is known to be accompanied by its risks and technical perplexity.
    Matched MeSH terms: Robotics
  20. Awang MS, Abdullah MZ
    Malays J Med Sci, 2011 Apr;18(2):53-7.
    PMID: 22135587 MyJurnal
    Surgical robots have been appearing in operating rooms over the past decade, and neurosurgery has been one of the pioneers in this area. In neurosurgery, the clinical use of robots has been limited to stereotactic procedures and endoscopic manoeuvres, although the brain is a unique organ and well-suited for robotic application. The aim of this study was to assess the ability of our vision-guided robotic system to perform basic neurosurgical procedures.
    Matched MeSH terms: Robotics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links