Displaying all 2 publications

Abstract:
Sort:
  1. Teh SS, Mah SH
    J Oleo Sci, 2018;67(11):1381-1387.
    PMID: 30404958 DOI: 10.5650/jos.ess18067
    The study was aimed at evaluating the effects of vegetable oils on emulsion stability. Palm olein (POo), olive oil (OO), safflower oil (SAF), grape seed oil (GSO), soybean oil (SBO) and sunflower oil (SFO) with different degree of saturation levels were chosen as major ingredient of oil phases. All the emulsions were stored at 4℃, 27℃ and 40℃ for 35 days and subjected to all the stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point. The results indicated that POo exhibited the highest stability, followed by SAF, OO, GSO, SFO and SBO. In addition, the results implied that the degree of saturation levels of vegetable oils does give significant effect on emulsion stability based on the centrifuge testing for an approximate 30% usage level of oil. The POo-based emulsion exhibited good emulsion stability throughout the experimental period indicated that POo could be a good carrier oil for various applications in cosmetic industry.
    Matched MeSH terms: Safflower Oil/chemistry
  2. Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, et al.
    Drug Deliv Transl Res, 2019 04;9(2):543-554.
    PMID: 29691812 DOI: 10.1007/s13346-018-0526-4
    Docetaxel has demonstrated extraordinary anticancer effects on lung cancer. However, lack of optimal bioavailability due to poor solubility and high toxicity at its therapeutic dose has hampered the clinical use of this anticancer drug. Development of nanoemulsion formulation along with biocompatible excipients aimed for pulmonary delivery is a potential strategy to deliver this poorly aqueous soluble drug with improved bioavailability and biocompatibility. In this work, screening and selection of pharmaceutically acceptable excipients at their minimal optimal concentration have been conducted. The selected nanoemulsion formulations were prepared using high-energy emulsification technique and subjected to physicochemical and aerodynamic characterizations. The formulated nanoemulsion had mean particle size and ζ-potential in the range of 90 to 110 nm and - 30 to - 40 mV respectively, indicating high colloidal stability. The pH, osmolality, and viscosity of the systems met the ideal requirement for pulmonary application. The DNE4 formulation exhibited slow drug release and excellent stability even under the influence of extreme environmental conditions. This was further confirmed by transmission electron microscopy as uniform spherical droplets in nanometer range were observed after storage at 45 ± 1 °C for 3 months indicating high thermal stability. The nebulized DNE4 exhibited desirable aerosolization properties for pulmonary delivery application and found to be more selective on human lung carcinoma cell (A549) than normal cell (MRC-5). Hence, these characteristics make the formulation a great candidate for the potential use as a carrier system for docetaxel in targeting lung cancer via pulmonary delivery.
    Matched MeSH terms: Safflower Oil/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links