Displaying publications 1 - 20 of 144 in total

Abstract:
Sort:
  1. Akbari S, Mahmood SM, Ghaedi H, Al-Hajri S
    Polymers (Basel), 2019 Jun 14;11(6).
    PMID: 31207965 DOI: 10.3390/polym11061046
    Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid-known as sulfonated polyacrylamide polymers-had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.
    Matched MeSH terms: Salinity
  2. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, et al.
    Biomolecules, 2021 02 10;11(2).
    PMID: 33578851 DOI: 10.3390/biom11020256
    As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review discusses the further improvement made on astaxanthin production by providing an overview of recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth, and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized during the green stage. On the other hand, the significance of the nitrogen depletion strategy and other exogenous factors comprising salinity, illumination, and temperature are considered for the astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular processes that limit the growth or photosynthesis in the green stage could trigger the encystment process and astaxanthin formation during the red stage. This review provides an insight regarding the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from H. pluvialis.
    Matched MeSH terms: Salinity
  3. Praveena SM, Aris AZ
    Mar Pollut Bull, 2013 Feb 15;67(1-2):196-9.
    PMID: 23260650 DOI: 10.1016/j.marpolbul.2012.11.037
    Tidal variation in tropical coastal water plays an important role on physicochemical characteristics and nutrients concentration. Baseline measurements were made for nutrients concentration and physicochemical properties of coastal water, Port Dickson, Malaysia. pH, temperature, oxidation reduction potential, salinity and electrical conductivity have high values at high tides. Principal Components Analysis (PCA) was used to understand spatial variation of nutrients and physicochemical pattern of Port Dickson coastal water at high and low tide. Four principal components of PCA were extracted at low and high tides. Positively loaded nutrients with negative loadings of DO, pH and ORP in PCA outputs indicated nutrients contribution related with pollution sources. This study output will be a baseline frame for future studies in Port Dickson involving water and sediment samples. Water and sediment samples of future monitoring studies in Port Dickson coastal water will help in understanding of coastal water chemistry and pollution sources.
    Matched MeSH terms: Salinity
  4. Tsai JW, Liew HJ, Jhang JJ, Hung SH, Meng PJ, Leu MY, et al.
    Fish Physiol Biochem, 2018 Apr;44(2):489-502.
    PMID: 29192359 DOI: 10.1007/s10695-017-0448-y
    The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1-3‰) and seawater (SW; 28-33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.
    Matched MeSH terms: Salinity*
  5. Minhat FI, Yahya K, Talib A, Ahmad O
    Trop Life Sci Res, 2013 Aug;24(1):35-43.
    PMID: 24575240 MyJurnal
    The distribution of benthic Foraminifera throughout the coastal waters of Taman Negara Pulau Pinang (Penang National Park), Malaysia was studied to assess the impact of various anthropogenic activities, such as fishing, ecotourism and floating cage culture. Samples were obtained at 200 m intervals within the subtidal zone, extending up to 1200 m offshore at Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh. The depth within coastal waters ranged between 1.5 m and 10.0 m, with predominantly muddy substrate at most stations. Water quality analysis showed little variation in micronutrient (nitrite, NO2; nitrate, NO3; ammonia, NH4 and orthophosphate, PO4) concentrations between sampling stations. Temperature (29.6±0.48°C), salinity (29.4±0.28 ppt), dissolved oxygen content (5.4±0.95 mg/l) and pH (8.5± 0.13) also showed little fluctuation between stations. A total of nine genera of foraminifera were identified in the study (i.e., Ammonia, Elphidium, Ammobaculites, Bigenerina, Quinqueloculina, Reopax, Globigerina, Textularia and Nonion). The distribution of benthic foraminifera was dominated by opportunistic groups that have a high tolerance to anthropogenic stressors. Ammonia had the highest frequency of occurrence (84.7%), followed by Bigenerina (50%), Ammobaculites (44.2%) and Elphidium (38.9%). The Ammonia-Elphidium Index (AEI) was used to describe the hypoxic condition of benthic communities at all sites. Teluk Bahang had the highest AEI value. The foraminiferal assemblages and distribution in Teluk Bahang, Teluk Aling, Teluk Ketapang and Pantai Acheh showed no correlation with physical or chemical environmental parameters.
    Matched MeSH terms: Salinity
  6. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ
    Environ Sci Pollut Res Int, 2014;21(11):7047-64.
    PMID: 24532282 DOI: 10.1007/s11356-014-2598-0
    In this study, geophysics, geochemistry, and geostatistical techniques were integrated to assess seawater intrusion in Kapas Island due to its geological complexity and multiple contamination sources. Five resistivity profiles were measured using an electric resistivity technique. The results reveal very low resistivity <1 Ωm, suggesting either marine clay deposit or seawater intrusion or both along the majority of the resistivity images. As a result, geochemistry was further employed to verify the resistivity evidence. The Chadha and Stiff diagrams classify the island groundwater into Ca-HCO3, Ca-Na-HCO3, Na-HCO3, and Na-Cl water types, with Ca-HCO3 as the dominant. The Mg(2+)/Mg(2+)+Ca(2+), HCO3 (-)/anion, Cl(-)/HCO3 (-), Na(+)/Cl(-), and SO4 (2-)/Cl(-) ratios show that some sampling sites are affected by seawater intrusion; these sampling sites fall within the same areas that show low-resistivity values. The resulting ratios and resistivity values were then used in the geographical information system (GIS) environment to create the geostatistical map of individual indicators. These maps were then overlaid to create the final map showing seawater-affected areas. The final map successfully delineates the area that is actually undergoing seawater intrusion. The proposed technique is not area specific, and hence, it can work in any place with similar completed characteristics or under the influence of multiple contaminants so as to distinguish the area that is truly affected by any targeted pollutants from the rest. This information would provide managers and policy makers with the knowledge of the current situation and will serve as a guide and standard in water research for sustainable management plan.
    Matched MeSH terms: Salinity
  7. Mohammed Falalu Hamza, Chandra MS, Zulkifli Merican Aljunid Merican, Hassan Soleimani, D. SK
    Sains Malaysiana, 2017;46:1641-1450.
    Foam flooding technique, commonly known as foam assisted water alternating gas method (FAWAG) has been identified as an effective chemical enhanced oil recovery (CEOR) technique. The ability of EOR-foam to sweep oil in low permeable zones makes it important displacement fluid in the oil industry. However, extreme reservoir conditions such as temperature, pressure and salinity have detrimental effects on the stability and the overall performance of the EOR-foam. Consequently, understanding foam stability and performance under different conditions is crucial for long term oil field application. This paper discusses the current status of the EOR-foam stability, performance and challenges from laboratory studies to field application perspective. The paper also highlights the knowledge gaps which require further research for successful field application.
    Matched MeSH terms: Salinity
  8. Talei D, Valdiani A, Maziah M, Sagineedu SR, Saad MS
    Biomed Res Int, 2013;2013:319047.
    PMID: 24371819 DOI: 10.1155/2013/319047
    Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm(-1)) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm(-1) led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions.
    Matched MeSH terms: Salinity
  9. Zakri, A.H.
    ASM Science Journal, 2009;3(2):200-202.
    MyJurnal
    Recent studies by the United Nations University - Institute of Advanced Studies (UNU-IAS) demonstrate that bioprospecting is taking place in Antarctica and the Southern Ocean and that related commercial applications were being marketed. The bioprospectors’ interest in Antarctica stems from two reasons. First, the lack of knowledge surrounding Antarctic biota provides opportunities to discover novel organisms of potential use to biotechnology. Second, Antarctica’s environmental extremes, such as cold temperatures, extreme aridity and salinity present conditions in which biota have evolved unique characteristics for survival (UNU-IAS 2003). Thus bioprospecting opportunities include, inter alia, the discovery of novel bioactives in species found in cold and dry lithic habitat, novel pigments found in hyper-saline lakes and antifreezes in sea-lakes (Cheng & Cheng 1999).
    Matched MeSH terms: Salinity
  10. Akbari S, Mahmood SM, Tan IM, Ghaedi H, Ling OL
    Polymers (Basel), 2017 Nov 27;9(12).
    PMID: 30965947 DOI: 10.3390/polym9120647
    This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide) with AMPS (2-Acrylamido-2-Methylpropane Sulfonate). AN132 VHM has a molecular weight of 9⁻11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9⁻11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature) type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100⁻4500 ppm) with NaCl (0.1⁻10 wt %) measured at 25 °C. The effect of hardness was investigated by preparing a CaCl₂-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR) application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.
    Matched MeSH terms: Salinity
  11. Abu-Alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M
    Sci Total Environ, 2018 Feb 15;615:972-989.
    PMID: 29751448 DOI: 10.1016/j.scitotenv.2017.09.320
    A comprehensive study was conducted to identify the salinization origins and the major hydrogeochemical processes controlling the salinization and deterioration of the Gaza coastal aquifer system through a combination approaches of statistical and geostatistical techniques, and detailed hydrogeochemical assessments. These analyses were applied on ten physicochemical variables for 219 wells using STATA/SE12 and Surfer softwares. Geostatistical analysis of the groundwater salinity showed that seawater intrusion along the coastline, and saltwater up-coning inland highly influenced the groundwater salinity of the study area. The hierarchical cluster analysis (HCA) technique yielded seven distinct hydrogeochemical signature clusters; (C1&C2: Eocene brackish water invasion, C3 saltwater up-coning, C4 human inputs, C5 seawater intrusion, C6 & C7 rainfall and mixing inputs). Box plot shows a wide variation of most of the ions while Chadha's plot elucidates the predominance of Na-Cl (71.6%) and Ca/Mg-Cl (25%) water types. It is found that, the highest and the lowest levels of salinization and the highest level of nitrate pollution were recorded in the northern area. This result reflects the sensitivity of this area to the human activities and/or natural actions. Around 90.4% of the wells are nitrate polluted. The main source of nitrate pollution is the sewage inputs while the farming inputs are very limited and restricted mostly in the sensitive northern area. Among the hydrogeochemical processes, ion exchange process was the most effective process all over the study area. Carbonate dissolution was common in the study area with the highest level in clusters 6, 7, 4 and 2 in the north while Gypsum dissolution was significant only in cluster 1 in the south and limited in the other clusters. This integrated multi-techniques research should be of benefit for effective utilization and management of the Gaza coastal aquifer system as well as for future work in other similar aquifers systems.
    Matched MeSH terms: Salinity*
  12. Mohammad-Noor N, Moestrup Ø, Lundholm N, Fraga S, Adam A, Holmes MJ, et al.
    J Phycol, 2013 Jun;49(3):536-45.
    PMID: 27007042 DOI: 10.1111/jpy.12062
    Coolia is a widespread and ecologically important genus of benthic marine dinoflagellates found in tropical regions. Historically, there has been taxonomic confusion about the taxonomy and toxicity of this group. The goal of this study was to resolve morphological questions concerning Coolia tropicalis and determine the taxonomic identity of the Australian Coolia isolate which has been reported to produce cooliatoxins. To accomplish this, the morphology of tropical strains from Belize (the type locality of C. tropicalis), Malaysia, Indonesia, and Australia were examined and compared to published reports. The morphological analysis showed that C. tropicalis differs from the original description in that it has a slightly larger size (35-47 μm long by 30-45 μm wide versus 23-40 μm long by 25-39 μm wide), and the shape of fourth apical plate, and the length of Po plate (7.4-12 μm versus 7 μm). Based on both morphology and phylogenetic analysis using LSU D1- D3 rDNA sequences, the clones of C. tropicalis from Malaysia, Indonesia, and Belize were found to form a monophyletic clade within the genus. The strain producing cooliatoxin was found to be C. tropicalis, not Coolia monotis as originally assumed. To explore the factors influencing the growth of Coolia species, the growth rates of C. tropicalis and Coolia malayensis were determined at different temperatures and salinities. Both species tolerated a wide range of temperatures, but cannot survive at temperatures <20°C or >35°C. C. monotis, the dominant species reported in the literature, probably does not produce toxins.
    Matched MeSH terms: Salinity
  13. Abd. Rahim Samsudin, Umar Hamzah, Abd. Ghani Rafek, Haryono
    The whole Bachok area is covered by alluvial deposit. The alluvium has three aquifers at depth of 0 - 5, 15 - 30 and 40 - 60 meters below surface. Preliminary geophysical surveys including seismic refraction, reflection and resistivity techniques have been carried out to investigate thickness and depth of the aquifers, depth of bedrock and the salinity of the underground water. Results show that the position of first aquifer has been well determined by seismic refraction technique. Whereas the details of deeper aquifers and the bedrock have been determined by seismic reflection techniques. Geoelectrical resistivity low obtained for the first aquifer suggest that it could be due to either salt water intrusion or the presence of marine clay.
    Keseluruhan kawasan Bachok merupakan endapan aluvium. Endapan ini mempunyai tiga akuifer pada kedalaman 0 - 5 meter, 15 - 30 meter dan 40 - 60 meter. Kajian geofizik pada tahap awal yang merangkumi aspek seismos biasan, seismos pantulan dan kerintangan geoelektrik telah dilakukan untuk menyiasat ketebalan dan kedalaman akuifer, kedalaman batu dasar dan kemasinan air tanah. Hasil kajian menunjukkan bahawa teknik seismos biasan telah dapat menghasilkan maklumat mengenai kedudukan akuifer pertama. manakala teknik seismos pantulan menghasilkan maklumat terperinci mengenai akuifer kedua dan ketiga serta batu dasar. Nilai kerintangan geoelektrik rendah bagi akuifer pertama menunjukkan sama ada disebabkan oleh intrusi air masin atau kehadiran lempung samudera.
    Matched MeSH terms: Salinity
  14. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, et al.
    Biomed Res Int, 2014;2014:208584.
    PMID: 24579076 DOI: 10.1155/2014/208584
    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
    Matched MeSH terms: Salinity*
  15. Gagliano MC, Ismail SB, Stams AJM, Plugge CM, Temmink H, Van Lier JB
    Water Res, 2017 09 15;121:61-71.
    PMID: 28511041 DOI: 10.1016/j.watres.2017.05.016
    For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules.
    Matched MeSH terms: Salinity*
  16. Isa HM, Kamal AH, Idris MH, Rosli Z, Ismail J
    Trop Life Sci Res, 2017 Jan;28(1):1-21.
    PMID: 28228913 MyJurnal DOI: 10.21315/tlsr2017.28.1.1
    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta (Caloglossa ogasawaraensis, Caloglossa adhaerens, Caloglossa stipitata, Bostrychia anomala, and Hypnea sp.), Chlorophyta (Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta (Dictyota sp.). The biomass of macroalgae was not influenced (p>0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm(2)) and Station 2 (141.72 mg/cm(2)), while the highest biomass was contributed by B. anomala (185.89 mg/cm(2)) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.
    Matched MeSH terms: Salinity
  17. Muhd-Faizul HA, Kua BC, Leaw YY
    Vet Parasitol, 2012 Feb 28;184(1):68-72.
    PMID: 21937167 DOI: 10.1016/j.vetpar.2011.08.008
    The Asian seabass is euryhaline, therefore it is interesting to describe the infestation and survival of caligids at varying salinity on the host. In this study, two different brackish water culture systems with monoculture and polyculture practices were investigated for the occurrence of Caligus spp. on Lates calcarifer. Polyculture practices mainly consisted of snapper (Lutjanus spp.), grouper (Epinephelus spp.) and seabass (L. calcarifer), while the monoculture was stocked with only seabass. A total of 777 Caligus spp. specimens were isolated from the sampling in 2009, consisting of three species; Caligus chiastos, Caligus epidemicus and Caligus rotundigenitalis. In 2011, the total specimen was increased to 3110 and two additional species were found; Caligus punctatus and one unknown species (Caligus sp.). A 98.6% of the total examination was represented by C. epidemicus. Constant presence of C. epidemicus was observed throughout the study, regardless the differences in between culturing practices and systems. This species was able to survive within wide salinity range, from 5 to 28 ppt. The other isolated species (C. chiastos, C. punctatus, C. rotundigenitalis and Caligus sp.) were only found infesting in polyculture cages with the salinity ranging from 25 to 28 ppt. Despite accounts for less than 2% of the total specimens, these species may able to produce a challenge for L. calcarifer polyculture farming activity due to their capability for host switching. The present study revealed the potential risk for cross-species transmission in polyculture practices.
    Matched MeSH terms: Salinity*
  18. Shariffah-Muzaimah SA, Idris AS, Madihah AZ, Dzolkhifli O, Kamaruzzaman S, Maizatul-Suriza M
    World J Microbiol Biotechnol, 2017 Dec 18;34(1):15.
    PMID: 29256103 DOI: 10.1007/s11274-017-2396-1
    Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.
    Matched MeSH terms: Salinity
  19. Shultana R, Kee Zuan AT, Yusop MR, Saud HM
    PLoS One, 2020;15(9):e0238537.
    PMID: 32886707 DOI: 10.1371/journal.pone.0238537
    In this study, we characterized, identified, and determined the effect of salt-tolerant PGPR isolated from coastal saline areas on rice growth and yield. A total of 44 bacterial strains were isolated, and 5 were found to be tolerant at high salt concentration. These isolates were further characterized for salinity tolerance and beneficial traits through a series of quantitative tests. Biochemical characterization showed that bacterial survivability decreases gradually with the increase of salt concentration. One of the strains, UPMRB9, produced the highest amount of exopolysaccharides when exposed to 1.5M of NaCl. Moreover, UPMRB9 absorbed the highest amount of sodium from the 1.5M of NaCl-amended media. The highest floc yield and biofilm were produced by UPMRE6 and UPMRB9 respectively, at 1M of NaCl concentration. The SEM observation confirmed the EPS production of UPMRB9 and UPMRE6 at 1.5M of NaCl concentration. These two isolates were identified as Bacillus tequilensis and Bacillus aryabhattai based on the 16S rRNA gene sequence. The functional group characterization of EPS showed the presence of hydroxyl, carboxyl, and amino groups. This corresponded to the presence of carbohydrates and proteins in the EPS and glucose was identified as the major type of carbohydrate. The functional groups of EPS can help to bind and chelate Na+ in the soil and thereby reduces the plant's exposure to the ion under saline conditions. The plant inoculation study revealed significant beneficial effects of bacterial inoculation on photosynthesis, transpiration, and stomatal conductance of the plant which leads to a higher yield. The Bacillus tequilensis and Bacillus aryabhattai strains showed good potential as PGPR for salinity mitigation practice for coastal rice cultivation.
    Matched MeSH terms: Salinity
  20. Alkhayat FA, Ahmad AH, Rahim J, Dieng H, Ismail BA, Imran M, et al.
    Saudi J Biol Sci, 2020 Sep;27(9):2358-2365.
    PMID: 32884417 DOI: 10.1016/j.sjbs.2020.07.006
    Mosquito borne diseases have remained a grave threat to human health and are posing a significant burden on health authorities around the globe. The understanding and insight of mosquito breeding habitats features is crucial for their effective management. Comprehensive larval surveys were carried out at 14 sites in Qatar. A total of 443 aquatic habitats were examined, among these 130 were found positive with Culex pipiens, Cx. quinquefasciatus, Cx. mattinglyi, Ochlerotatus dorsalis, Oc. caspius and Anopheles stephensi. The majority of positive breeding habitats were recorded in urban areas (67.6%), followed by livestock (13.8%), and least were in agriculture (10.7%). An. stephensi larvae were positively correlated with Cx. pipien, Cx. quinquefasciatus, and negatively with water salinity. Large and shaded habitats were the most preferred by An. stephensi. In addition, Cx. pipiens was positively associated with the turbidity and pH, and was negatively associated with vegetation and habitat size. A negative association of Cx. quinquefasciatus with dissolved oxygen, water temperature, and salinity, while positive with habitat surface area was observed. Oc. dorsalis was negatively correlated with pH, water temperature, depth, and habitat surface area, whereas salinity water was more preferable site for females to lay their eggs. These results demonstrate that environmental factors play a significant role in preference of both anopheline and culicine for oviposition, while their effective management must be developed as the most viable tool to minimize mosquito borne diseases.
    Matched MeSH terms: Salinity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links