Displaying publications 1 - 20 of 393 in total

Abstract:
Sort:
  1. Gan HM, Eng WWH, Barton MK, Adams LE, Samsudin NA, Bartl AJ, et al.
    Genome Announc, 2017 Aug 24;5(34).
    PMID: 28839032 DOI: 10.1128/genomeA.00857-17
    We report here the genome sequences of Salmonella enterica subsp. enterica serovar Typhimurium strains TT6675 and TT9097, which we utilize for genetic analyses of giant bacterial viruses. Our analyses identified several genetic variations between the two strains, most significantly confirming strain TT6675 as a serine suppressor and TT9097 as a nonsuppressor.
    Matched MeSH terms: Salmonella typhimurium
  2. Roslan NS, Jabeen S, Mat Isa N, Omar AR, Bejo MH, Ideris A
    Genome Announc, 2017 Nov 16;5(46).
    PMID: 29146857 DOI: 10.1128/genomeA.01272-17
    Salmonella enterica subsp. enterica serovar Typhimurium is one of several well-categorized Salmonella serotypes recognized globally. Here, we report the whole-genome sequence of S Typhimurium strain UPM 260, isolated from a broiler chicken.
    Matched MeSH terms: Salmonella typhimurium
  3. Tanveer M, Ahmed A, Siddiqui A, Rehman IU, Hashmi FK
    Public Health, 2021 09;198:e15-e16.
    PMID: 34187703 DOI: 10.1016/j.puhe.2021.05.019
    Matched MeSH terms: Salmonella typhi
  4. Hamizah, M.S., Norhayati, M.N., Nor Azlina, A.R., Wan Shukri, W.S., Abdulah, H.
    MyJurnal
    Penyakit tifoid adalah penyakit berjangkit bawaan air dan makanan yang disebabkan oleh Salmonella typhii. Penyakit ini berlaku di seluruh durtia dan endemik di Kelantan. Pada April 2005, terdapat peningkatan kes tifoid yang dinotifikasi di daerah Bachok dan wabak telah diistiharkan. Pasukan siasatan telah dibentuk di mana setiap kes telahydisiasat dengan segera dan tindakan kawalan telah diambil seperti pemeriksaan dan penutupan premis makanan, kerja-kerja sanitasi dan pendidikan kesihatan. Pengesanan kes secara aktifjuga telah dilakukan. Mukim Gunong mencatatkan jumlah kes tertinggi iaitu 46.3%. Majoriti daripada kes terdiri daripadapelajar. Dua pembawa dari kalangan kontek juga turut dikesan. Lekuk epidemik menggambarkan berlakunya wabak purtca lazim. Lima daripada 1 1 1 bilangan sampel air dan dua daripada 146 bilangan sampel makanart yang diperiksa adalah positif terhadap Salmonella species tetapi tiada yang positif terhadap Salmonella typhii. Meskipun Pasar Jelawat merupakan lokasi yang disyakki sebagai punca utama jangkitan, ianya tidak dapat disahkan melalui penyiasatan dan ujan makmal.
    Matched MeSH terms: Salmonella; Salmonella enterica
  5. Khoo CH, Cheah YK, Lee LH, Sim JH, Salleh NA, Sidik SM, et al.
    Antonie Van Leeuwenhoek, 2009 Nov;96(4):441-57.
    PMID: 19565351 DOI: 10.1007/s10482-009-9358-z
    The increased occurrence of Salmonella occurrence in local indigenous vegetables and poultry meat can be a potential health hazards. This study is aimed to detect the prevalence of twenty different virulence factors among Salmonella enterica strains isolated from poultry and local indigenous vegetables in Malaysia via an optimized, rapid and specific multiplex PCR assay. The assay encompasses a total of 19 Salmonella pathogenicity islands genes and a quorum sensing gene (sdiA) in three multiplex reaction sets. A total of 114 Salmonella enterica isolates belonging to 38 different serovars were tested. Each isolate in under this study was found to possess up to 70% of the virulence genes tested and exhibited variable pathogenicity gene patterns. Reproducibility of the multiplex PCR assay was found to be 100% and the detection limit of the optimized multiplex PCR was tested with lowest detectable concentration of DNA 0.8 pg microl(-1). This study demonstrated various Salmonella pathogenicity island virulence gene patterns even within the same serovar. This sets of multiplex PCR system provide a fast and reliable typing approach based on Salmonella pathogenicity islands, thus enabling an effective monitoring of emerging pathogenic Salmonella strains as an additional tool in Salmonella surveillance studies.
    Matched MeSH terms: Salmonella enterica/classification*; Salmonella enterica/pathogenicity
  6. Khoo E, Roslee R, Zakaria Z, Ahmad NI
    J Vet Sci, 2023 Nov;24(6):e82.
    PMID: 38031519 DOI: 10.4142/jvs.23053
    BACKGROUND: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years.

    OBJECTIVE: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia.

    METHODS: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s).

    RESULTS: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3″)-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected.

    CONCLUSION: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

    Matched MeSH terms: Salmonella/genetics
  7. Kalai Chelvam K, Chai LC, Thong KL
    Gut Pathog, 2014;6(1):2.
    PMID: 24499680 DOI: 10.1186/1757-4749-6-2
    Salmonella enterica serovar Typhi (S. Typhi) exhibits unique characteristics as an intracellular human pathogen. It causes both acute and chronic infection with various disease manifestations in the human host only. The principal factors underlying the unique lifestyle of motility and biofilm forming ability of S. Typhi remain largely unknown. The main objective of this study was to explore and investigate the motility and biofilm forming behaviour among S. Typhi strains of diverse background.
    Matched MeSH terms: Salmonella typhi
  8. Chai LC, Kong BH, Elemfareji OI, Thong KL
    PLoS One, 2012;7(5):e36201.
    PMID: 22662115 DOI: 10.1371/journal.pone.0036201
    Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study.
    Matched MeSH terms: Salmonella typhi/isolation & purification; Salmonella typhi/metabolism*
  9. Kalai Chelvam K, Yap KP, Chai LC, Thong KL
    PLoS One, 2015;10(5):e0126207.
    PMID: 25946205 DOI: 10.1371/journal.pone.0126207
    Salmonella enterica serovar Typhi (S. Typhi) is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC) biofilm inoculator (96-well peg lid) and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates) and D-threonine (amino acid) were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among different S. Typhi strains has suggested the possible involvement of various metabolic pathways that might be related to the virulence and pathogenesis of this host-restricted human pathogen. The data serve as a caveat for future in-vivo studies to investigate the carbon metabolic activity to the pathogenesis of S. Typhi.
    Matched MeSH terms: Salmonella typhi/genetics; Salmonella typhi/pathogenicity*; Salmonella typhi/physiology*
  10. Choo KE, Razif AR, Oppenheimer SJ, Ariffin WA, Lau J, Abraham T
    J Paediatr Child Health, 1993 Feb;29(1):36-9.
    PMID: 8461177
    Data are presented for 2382 children investigated for fever in a Malaysian hospital between 1984 and 1987 when Widal tests and blood cultures were a routine part of every fever screen. There were 145 children who were culture positive (TYP-CP) for Salmonella typhi, while 166 were culture negative but were diagnosed as having typhoid (TYP-CN). Analyses of the sensitivity and specificity of combinations of initial Widal titres in predicting a positive S. typhi culture in a febrile child (culture positive vs the rest) showed the best model to be an O- and/or H-titre of > or = 1 in 40 (sensitivity 89%; specificity 89%). While the negative predictive value of the model was high (99.2%) the positive predictive value remained below 50% even for very high titres of O and H (> 1 in 640), at which point the specificity was 98.5%, supporting the clinical view that a high proportion of the TYP-CN patients really were typhoid but were missed by culture. The TYP-CN patients showed a very similar clinical and age profile to TYP-CP patients. The length of history of fever did not affect the initial Widal titre in culture positive cases. The Widal test in children remains a sensitive and specific 'fever screen' for typhoid although it will not identify all cases. In children, lower cut-off points for O- and H-titres should be used than are generally recommended.
    Matched MeSH terms: Salmonella typhi/immunology; Salmonella typhi/isolation & purification*
  11. Yeap CSY, Chaibun T, Lee SY, Zhao B, Jan Y, La-O-Vorakiat C, et al.
    Chem Commun (Camb), 2021 Nov 16;57(91):12155-12158.
    PMID: 34726213 DOI: 10.1039/d1cc05181d
    We report a highly sensitive and selective multiplex assay by empowering an electrochemical DNA sensor with isothermal rolling circle amplification. The assay could simultaneously detect and discriminate three common entero-pathogens in a single reaction, with femtomolar sensitivity. It is useful for field- or resource-limited settings.
    Matched MeSH terms: Salmonella typhi/isolation & purification*
  12. Pang T, Levine MM, Ivanoff B, Wain J, Finlay BB
    Trends Microbiol., 1998 Apr;6(4):131-3.
    PMID: 9587187
    Matched MeSH terms: Salmonella typhi/drug effects; Salmonella typhi/genetics
  13. Esa H, Norazlah B, Hameed AA, Ding CH, Wahab AA
    Trop Biomed, 2021 Jun 01;38(2):192-195.
    PMID: 34172710 DOI: 10.47665/tb.38.2.057
    The rarity of acute psychosis in typhoid fever can result in delayed and misdiagnosis of the condition. We report a case of a 20-year-old man who presented with fever and acute psychotic symptoms. This was associated with headache, dizziness, and body weakness. There were no other significant symptoms. Neurological examination revealed reduced muscle tone of bilateral lower limbs but otherwise unremarkable. The computed tomography (CT) scan of his brain showed no abnormality. Blood specimens for microbiological culture grew Salmonella Typhi. This isolate was susceptible to chloramphenicol, ampicillin, ceftriaxone, ciprofloxacin, and trimethoprim-sulfamethoxazole. He was treated with intravenous ceftriaxone for one week and responded well. He was discharged with oral ciprofloxacin for another week. The repeated blood and stool for bacterial culture yielded no growth of Salmonella Typhi.
    Matched MeSH terms: Salmonella typhi
  14. Yap YF, Puthucheary SD
    Singapore Med J, 1998 Jun;39(6):260-2.
    PMID: 9803814
    Typhoid fever, which is endemic in Malaysia, affects all age groups and it has been stated that classical features described in textbooks were absent in children. The aim of this study was to find out whether this was true in the local setting and hence a retrospective study was undertaken.
    Matched MeSH terms: Salmonella typhi/isolation & purification*
  15. Sulaiman W
    Malays J Med Sci, 2006 Jul;13(2):64-5.
    PMID: 22589607 MyJurnal
    Malaysia is endemic for both these diseases and one should not be too surprised when faced with a diagnosis of co-infection of typhoid and malaria, as have been described in India and Canada. Here we describe one such case of Salmonella typhi and Plasmodium vivax infection.
    Matched MeSH terms: Salmonella typhi; Salmonella enterica
  16. Sarjit A, Dykes GA
    Int J Food Microbiol, 2015 Jun 16;203:63-9.
    PMID: 25791251 DOI: 10.1016/j.ijfoodmicro.2015.02.026
    Little work has been reported on the use of commercial antimicrobials against foodborne pathogens on duck meat. We investigated the effectiveness of trisodium phosphate (TSP) and sodium hypochlorite (SH) as antimicrobial treatments against Campylobacter and Salmonella on duck meat under simulated commercial water chilling conditions. The results were compared to the same treatments on well-studied chicken meat. A six strain Campylobacter or Salmonella cocktail was inoculated (5 ml) at two dilution levels (10(4) and 10(8) cfu/ml) onto 25 g duck or chicken meat with skin and allowed to attach for 10 min. The meat was exposed to three concentrations of pH adjusted TSP (8, 10 and 12% (w/v), pH 11.5) or SH (40, 50 and 60 ppm, pH 5.5) in 30 ml water under simulated spin chiller conditions (4 °C, agitation) for 10 min. In a parallel experiment the meat was placed in the antimicrobial treatments before inoculation and bacterial cocktails were added to the meat after the antimicrobial solution was removed while all other parameters were maintained. Untreated controls and controls using water were included in all experiments. Bacterial numbers were determined on Campylobacter blood-free selective agar and Mueller Hinton agar or xylose deoxycholate agar and tryptone soya agar using the thin agar layer method for Campylobacter and Salmonella, respectively. All TSP concentrations significantly (p<0.05) reduced numbers of Campylobacter (~1.2-6.4 log cfu/cm(2)) and Salmonella (~0.4-6.6 log cfu/cm(2)) on both duck and chicken meat. On duck meat, numbers of Campylobacter were less than the limit of detection at higher concentrations of TSP and numbers of Salmonella were less than the limit of detection at all concentrations of TSP except one. On chicken meat, numbers of Campylobacter and Salmonella were less than the limit of detection only at the lower inoculum level and higher TSP concentrations. By contrast only some of the concentrations of SH significantly (p<0.05) reduced numbers of Campylobacter and Salmonella (~0.2-1.5 log cfu/cm(2)) on both duck and chicken meats. None of the SH treatments resulted in numbers of either pathogen being less than limit of detection. Results indicate that chicken meat has the ability to effectively protect Campylobacter and Salmonella against the impact of trisodium phosphate and sodium hypochlorite while duck meat does not. This study suggests that trisodium phosphate has a strong potential for application in a commercial poultry processing to reduce Campylobacter and Salmonella specifically on duck meat.
    Matched MeSH terms: Salmonella/drug effects*
  17. Gupta V, Singla N, Bansal N, Kaistha N, Chander J
    Malays J Med Sci, 2013 Jul;20(4):71-5.
    PMID: 24043999
    BACKGROUND: The incidence of multidrug resistant enteric fever is increasing alarmingly. This study was planned to determine the rate of isolation of Salmonella spp. and to compare the isolates for their epidemiological parameters and antimicrobial susceptibility patterns at our center.

    METHODS: The study was conducted over a span of three years with a total of 8142, 8134, and 8114 blood culture samples processed for the years 2008, 2009, and 2010 respectively. The minimum inhibitory concentration (MIC) for ciprofloxacin and chloramphenicol was determined using an agar dilution method. The MIC for ciprofloxacin was also confirmed by Epsilon-test (E -test) strips.

    RESULTS: Of the total 302 Salmonella spp. isolated, 257 were Salmonella enterica serotype Typhi (85.1%) and 45 (14.9%) were S. enterica serotype Paratyphi A. The majority of the isolates recovered were from the pediatric age group (54.6%) and males (60.6%). Complete susceptibility was observed to chloramphenicol, cefotaxime, ceftriaxone, and azithromycin over the last two years (2009 and 2010), with an increase in resistance to nalidixic acid (100%) and ciprofloxacin (13.6%).

    CONCLUSION: In our study, we found augmentation of resistance to nalidixic acid and fluoroquinolones and complete sensitivity to ceftriaxone along with reemergence of chloramphenicol sensitivity for Salmonella isolates. This report emphasises the necessity of continuous surveillance of antibiograms of enteric fever isolates in an area.

    Matched MeSH terms: Salmonella; Salmonella typhi
  18. Chin KCJ, Taylor TD, Hebrard M, Anbalagan K, Dashti MG, Phua KK
    BMC Genomics, 2017 Oct 31;18(1):836.
    PMID: 29089020 DOI: 10.1186/s12864-017-4212-6
    BACKGROUND: Typhoid fever is an acute systemic infection of humans caused by Salmonella enterica subspecies enterica serovar Typhi (S. Typhi). In chronic carriers, the bacteria survive the harsh environment of the gallbladder by producing biofilm. The phenotype of S. Typhi biofilm cells is significantly different from the free-swimming planktonic cells, and studies have shown that they are associated with antibiotic resistance, immune system evasion, and bacterial persistence. However, the mechanism of this transition and the events leading to biofilm formation are unknown. High throughput sequencing was performed to identify the genes involved in biofilm formation and to postulate the mechanism of action.

    RESULTS: Planktonic S. Typhi cells were cultured using standard nutrient broth whereas biofilm cells were cultured in a stressful environment using high shearing-force and bile to mimic the gallbladder. Sequencing libraries were prepared from S. Typhi planktonic cells and mature biofilm cells using the Illumina HiSeq 2500 platform, and the transcriptome data obtained were processed using Cufflinks bioinformatics suite of programs to investigate differential gene expression between the two phenotypes. A total of 35 up-regulated and 29 down-regulated genes were identified. The identities of the differentially expressed genes were confirmed using NCBI BLAST and their functions were analyzed. The results showed that the genes associated with metabolic processes and biofilm regulations were down-regulated while those associated with the membrane matrix and antibiotic resistance were highly up-regulated.

    CONCLUSIONS: It is proposed that the biofilm phenotype of S. Typhi allows the bacteria to increase production of the membrane matrix in order to serve as a physical shield and to adhere to surfaces, and enter an energy conservation state in response to the stressful environment. Conversely, the planktonic phenotype allows the bacteria to produce flagella and increase metabolic activity to enable the bacteria to migrate and form new colonies of infection. This data provide a basis for further studies to uncover the mechanism of biofilm formation in S. Typhi and to discover novel genes or pathways associated with the development of the typhoid carrier state.

    Matched MeSH terms: Salmonella typhi/genetics*; Salmonella typhi/growth & development*
  19. Balaram P, Kien PK, Ismail A
    Int J Med Microbiol, 2009 Mar;299(3):177-85.
    PMID: 18845475 DOI: 10.1016/j.ijmm.2008.08.004
    Bacterial persistence is of major concern worldwide in the control of a number of bacterial infections. The carriers who are asymptomatic act as reservoirs of the bacteria. Knowledge of the host response, of the persistence process, and of the potential of biological mediators as diagnostic markers is essential towards development of prophylactic and treatment modalities for these diseases. Immune mechanisms related to recognition and elimination of the bacteria play pivotal roles in the control of bacterial infections. The majority of the studies on bacterial infections detail the immune mechanisms in the active phase of infection, and reports on the immune status in carriers are scanty. The present review describes the role of recognition molecules (TLRs) and the immune mediators (cytokines) in bacterial persistence. It appears that the TLR-mediated induction of cytokine profiles differs in active infection and bacterial persistence, with an active Th1 response being beneficial for the clearance of a high load of bacteria and at the same time conducive for the persistence of low bacterial load. Immunomodulation aiming at stimulation of the immune responses should be carried out with care as it could give rise to a carrier state in individuals with low load of the bacteria.
    Matched MeSH terms: Salmonella Infections/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links