Displaying publications 1 - 20 of 203 in total

Abstract:
Sort:
  1. Musa H, Kasim FH, Gunny AAN, Gopinath SCB, Ahmad MA
    3 Biotech, 2019 Aug;9(8):314.
    PMID: 31406636 DOI: 10.1007/s13205-019-1845-y
    Initially, a new moderate halophilic strain was locally isolated from seawater. The partial 16S rRNA sequence analysis positioned the organism in Marinobacter genus and was named 'Marinobacter litoralis SW-45'. This study further demonstrates successful utilization of the halophilic M. litoralis SW-45 lipase (MLL) for butyl ester synthesis from crude palm fruit oil (CPO) and kernel oil (CPKO) in heptane and solvent-free system, respectively, using hydroesterification. Hydrolysis and esterification of enzymatic [Thermomyces lanuginosus lipase (TLL)] hydrolysis of CPO and CPKO to free fatty acids (FFA) followed by MLL-catalytic esterification of the concentrated FFAs with butanol (acyl acceptor) to synthesize butyl esters were performed. A one-factor-at-a-time technique (OFAT) was used to study the influence of physicochemical factors on the esterification reaction. Under optimal esterification conditions of 40 and 45 °C, 150 and 230 rpm, 50% (v/v) biocatalyst concentration, 1:1 and 5:1 butanol:FFA, 9% and 15% (w/v) NaCl, 60 and 15 min reaction time for CPO- and CPKO-derived FFA esterification system, maximum ester conversion of 62.2% and 69.1%, respectively, was attained. Gas chromatography (GC) analysis confirmed the products formed as butyl esters. These results showed halophilic lipase has promising potential to be used for biosynthesis of butyl esters in oleochemical industry.
    Matched MeSH terms: Seawater
  2. Bell JD, Munro JL, Nash WJ, Rothlisberg PC, Loneragan NR, Ward RD, et al.
    Adv. Mar. Biol., 2005;49:xi-374.
    PMID: 16503428
    Matched MeSH terms: Seawater
  3. Lee CW, Bong CW, Hii YS
    Appl Environ Microbiol, 2009 Dec;75(24):7594-601.
    PMID: 19820145 DOI: 10.1128/AEM.01227-09
    We investigated the temporal variation of bacterial production, respiration, and growth efficiency in the tropical coastal waters of Peninsular Malaysia. We selected five stations including two estuaries and three coastal water stations. The temperature was relatively stable (averaging around 29.5 degrees C), whereas salinity was more variable in the estuaries. We also measured dissolved organic carbon and nitrogen (DOC and DON, respectively) concentrations. DOC generally ranged from 100 to 900 microM, whereas DON ranged from 0 to 32 microM. Bacterial respiration ranged from 0.5 to 3.2 microM O2 h(-1), whereas bacterial production ranged from 0.05 to 0.51 microM C h(-1). Bacterial growth efficiency was calculated as bacterial production/(bacterial production + respiration), and ranged from 0.02 to 0.40. Multiple correlation analyses revealed that bacterial production was dependent upon primary production (r2 = 0.169, df = 31, and P < 0.02) whereas bacterial respiration was dependent upon both substrate quality (i.e., DOC/DON ratio) (r2 = 0.137, df = 32, and P = 0.03) and temperature (r2 = 0.113, df = 36, and P = 0.04). Substrate quality was the most important factor (r2 = 0.119, df = 33, and P = 0.04) for the regulation of bacterial growth efficiency. Using bacterial growth efficiency values, the average bacterial carbon demand calculated was from 5.30 to 11.28 microM C h(-1). When the bacterial carbon demand was compared with primary productivity, we found that net heterotrophy was established at only two stations. The ratio of bacterial carbon demand to net primary production correlated significantly with bacterial growth efficiency (r2 = 0.341, df = 35, and P < 0.001). From nonlinear regression analysis, we found that net heterotrophy was established when bacterial growth efficiency was <0.08. Our study showed the extent of net heterotrophy in these waters and illustrated the importance of heterotrophic microbial processes in coastal aquatic food webs.
    Matched MeSH terms: Seawater/microbiology*; Seawater/chemistry
  4. Binti Ibnu Rasid EN, Mohamad SE, Jamaluddin H, Salleh MM
    Appl Biochem Biotechnol, 2014 Feb;172(4):2160-74.
    PMID: 24338298 DOI: 10.1007/s12010-013-0644-x
    Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 2(3) full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.
    Matched MeSH terms: Seawater/microbiology*
  5. Wang W, Shao Z
    Appl Microbiol Biotechnol, 2012 Apr;94(2):437-48.
    PMID: 22207216 DOI: 10.1007/s00253-011-3818-x
    Alcanivorax hongdengensis A-11-3 is a newly identified type strain isolated from the surface water of the Malacca and Singapore Straits that can degrade a wide range of alkanes. To understand the degradation mechanism of this strain, the genes encoding alkane hydroxylases were obtained by PCR screening and shotgun sequencing of a genomic fosmid library. Six genes involved in alkane degradation were found, including alkB1, alkB2, p450-1, p450-2, p450-3 and almA. Heterogeneous expression analysis confirmed their functions as alkane oxidases in Pseudomonas putida GPo12 (pGEc47ΔB) or Pseudomonas fluorescens KOB2Δ1. Q-PCR revealed that the transcription of alkB1 and alkB2 was enhanced in the presence of n-alkanes C(12) to C(24); three p450 genes were up-regulated by C(8)-C(16) n-alkanes at different levels, whereas enhanced expression of almA was observed when strain A-11-3 grew with long-chain alkanes (C(24) to C(36)). In the case of branched alkanes, pristane significantly enhanced the expression of alkB1, p450-3 and almA. The six genes enable strain A-11-3 to degrade short (C(8)) to long (C(36)) alkanes that are straight or branched. The ability of A. hongdengensis A-11-3 to thrive in oil-polluted marine environments may be due to this strain's multiple systems for alkane degradation and its range of substrates.
    Matched MeSH terms: Seawater/microbiology
  6. Ahmad Z, Mei-Wo Y, Abu Bakar AS, Shahar H
    Appl Radiat Isot, 2010 Sep;68(9):1839-45.
    PMID: 20430636 DOI: 10.1016/j.apradiso.2010.04.012
    The studies of (137)Cs and (239+240)Pu distributions in surface seawater at South China Sea within the Exclusive Economic Zone (EEZ) of Peninsular Malaysia were carried out in June 2008. The analysis results will serve as additional information to the expanded baseline data for Malaysia's marine environment. Thirty locations from extended study area were identified in the EEZ from which large volumes of surface seawater samples were collected. Different co-precipitation techniques were employed to concentrate cesium and plutonium separately. A known amount of (134)Cs and (242)Pu tracers were used as yield determinant. The precipitate slurry was collected and oven dried at 60(o)C for 1-2 days. Cesium precipitate was fine-ground and counted using gamma-ray spectrometry system at 661.62keV, while plutonium was separated from other radionuclides using anion exchange, electrodeposited and counted using alpha spectrometry. The activity concentrations of (137)Cs and (239+240)Pu were in the range of 3.40-5.89Bq/m(3) and 2.3-7.9mBq/m(3), respectively. The (239+240)Pu/(137)Cs ratios indicate that there are no new inputs of these radionuclides into the area.
    Matched MeSH terms: Seawater/chemistry*
  7. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Seawater/chemistry*
  8. Foong CP, Lau NS, Deguchi S, Toyofuku T, Taylor TD, Sudesh K, et al.
    BMC Microbiol, 2014;14:318.
    PMID: 25539583 DOI: 10.1186/s12866-014-0318-z
    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host.
    Matched MeSH terms: Seawater/microbiology*
  9. Ahmed, Moussa Mohamed, Nik Rashida Nik Abdul Ghani, Jami, Mohammed Saedi, Mirghani, Mohamed Elwathig Saeed, Md. Noor Salleh
    MyJurnal
    Boron has been classified as a drinking water pollutant in many countries. It is harmful to many plants, exceptionally sensible plants, and human health. Therefore, boron level needs to be decreased to 0.3 mg/L for drinking water and within 0.5 mg/L to 1 mg/L for irrigation water. In this study, various operational parameters namely pH, contact time and liquid/solid ratio were investigated to determine the potential of using date seed (or date pit or date stone) to remove boron from seawater. This study's main objective was to determine boron adsorption capacities of date seeds prepared by various methods (i.e., powdered, activated, acid-treated and defatted seed) by batch adsorption process using boron contaminated synthetic seawater. The process parameters of the selected biosorbent among the four date seed preparations methods were optimized. The surface characteristics were analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The results showed that acid-treated date seed was the best biosorbent in terms of removing 89.18% boron from aqueous solution at neutral pH, liquid to solid ratio of 5 within 2 hours of reaction time at room temperature (25°C±2°C).
    Matched MeSH terms: Seawater
  10. Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, Idris A
    Bioresour Technol, 2014 Jun;162:38-44.
    PMID: 24736210 DOI: 10.1016/j.biortech.2014.03.113
    Wavelength of light is a crucial factor which renders microalgae as the potential biodiesel. In this study, Tetraselmis sp. and Nannochloropsis sp. as famous targets were selected. The effect of different light wavelengths on growth rate and lipid production was studied. Microalgae were cultivated for 14 days as under blue, red, red-blue LED and white fluorescent light. The growth rate of microalgae was analyzed by spectrophotometer and cell counting while oil production under improved Nile red method. Optical density result showed the microalgae exhibited better growth curve under blue wavelength. Besides, Tetraselmis sp. and Nannochloropsis sp. under blue wavelength showed the higher growth rate (1.47 and 1.64 day(-1)) and oil production (102.954 and 702.366 a.u.). Gas chromatography analysis also showed that palmitic acid and stearic acid which were compulsory components for biodiesel contribute around 49-51% of total FAME from Nannochloropsis sp. and 81-83% of total FAME from Tetraselmis sp.
    Matched MeSH terms: Seawater/microbiology*
  11. Lananan F, Jusoh A, Ali N, Lam SS, Endut A
    Bioresour Technol, 2013 Aug;141:75-82.
    PMID: 23562179 DOI: 10.1016/j.biortech.2013.03.006
    A study was performed to determine the effect of Conway and f/2 media on the growth of microalgae genera. Genera of Chlorella sp., Dunaliella sp., Isochrysis sp., Chaetoceros sp., Pavlova sp. and Tetraselmis sp. were isolated from the South China Sea. During the cultivation period, the density of cells were determined using Syringe Liquid Sampler Particle Measuring System (SLS-PMS) that also generated the population distribution curve based on the size of the cells. The population of the microalgae genera is thought to consist of mother and daughter generations since these microalgae genera reproduce by releasing small non-motile reproductive cells (autospores). It was found that the reproduction of Tetraselmis sp., Dunaliella sp. and Pavlova sp. could be sustained longer in f/2 Medium. Higher cell density was achieved by genus Dunaliella, Chlorella and Isochrysis in Conway Medium. Different genera of microalgae had a preference for different types of cultivation media.
    Matched MeSH terms: Seawater/chemistry*
  12. Zahed MA, Aziz HA, Isa MH, Mohajeri L, Mohajeri S
    Bioresour Technol, 2010 Dec;101(24):9455-60.
    PMID: 20705460 DOI: 10.1016/j.biortech.2010.07.077
    To determine the influence of nutrients on the rate of biodegradation, a five-level, three-factor central composite design (CCD) was employed for bioremediation of seawater artificially contaminated with crude oil. Removal of total petroleum hydrocarbons (TPH) was the dependent variable. Samples were extracted and analyzed according to US-EPA protocols. A significant (R(2)=0.9645, P<0.0001) quadratic polynomial mathematical model was generated. Removal from samples not subjected to optimization and removal by natural attenuation were 53.3% and 22.6%, respectively. Numerical optimization was carried out based on desirability functions for maximum TPH removal. For an initial crude oil concentration of 1g/L supplemented with 190.21 mg/L nitrogen and 12.71 mg/L phosphorus, the Design-Expert software predicted 60.9% hydrocarbon removal; 58.6% removal was observed in a 28-day experiment.
    Matched MeSH terms: Seawater/analysis*
  13. Chen CY, Nagarajan D, Cheah WY
    Bioresour Technol, 2018 Apr;253:1-7.
    PMID: 29328929 DOI: 10.1016/j.biortech.2017.12.102
    In this study, Nannochloropsis oceanica CY2 was grown in deep-sea water (DSW)-based medium in 5-L plastic bag-type photobioreactors (PBRs) for the autotrophic production of Eicosapentaenoic acid (EPA, 20:5n-3). EPA production of N. oceanica CY2 was stimulated when it was grown in 100% DSW amended with 1.5 g L-1 NaNO3, achieving a EPA content of 3.1% and a biomass concentration of 3.3 g L-1. An outdoor-simulated microalgae cultivation system was also conducted to validate the feasibility of outdoor cultivation of the CY2 strain in plastic bag-type PBRs. Using an inoculum size of 0.6 g/L, the biomass concentration in the PBR culture was 3.5 g L-1, while the EPA content and productivity reached a maximal level of 4.12% and 7.49 mg L-1 d-1, respectively. When the PBRs were operated on semi-batch mode, the EPA productivity could further increase to 9.9 mg L-1 d-1 with a stable EPA content of 4.1%.
    Matched MeSH terms: Seawater
  14. Thevarajoo S, Selvaratnam C, Chan KG, Goh KM, Chong CS
    Braz J Microbiol, 2017 07 19;49(1):10-12.
    PMID: 28778371 DOI: 10.1016/j.bjm.2017.03.013
    Vitellibacter aquimaris D-24T (=KCTC 42708T=DSM 101732T), a halophilic marine bacterium, was isolated from seawater collected from Desaru beach, Malaysia. Here, we present the draft genome sequence of D-24T with a genome size of approximately 3.1Mbp and G+C content of 39.93%. The genome of D-24T contains genes involved in reducing a potent greenhouse gas (N2O) in the environment and the degradation of proteinaceous compounds. Genome availability will provide insights into potential biotechnological and environmental applications of this bacterium.
    Matched MeSH terms: Seawater/microbiology*
  15. CHIN, W. L., ANTON, A., KUMAR, S.V., TEOH, P. L.
    MyJurnal
    In Malaysia, harmful algal blooms often occur along the coastal waters of west Sabah, where one of the causative organisms is the toxin-producing dinoflagellate, Pyrodinium bahamense var. compressum. A total of five P. bahamense var. compressum isolates were obtained from four locations and were cultured in f/2 medium. A Polymerase Chain Reaction (PCR) based technique was developed and used to screen for the presence of the dinoflagellate, P. bahamense var. compressum. A dinoflagellate-specific primer pair was designed based on sequences of P. bahamense var. compressum to amplify the 18S small subunit ribosomal DNA (rDNA) sequences. The rDNA of the P. bahamense var. compressum isolates were obtained. A species-specific primer pair was designed to target a 600 bp rDNA sequence of the target dinoflagellate. The primer pair targeting P. bahamense var. compressum did not yield any product with the fifteen algae cultures used as negative controls, but only amplified the rDNA of P. bahamense var. compressum cultures. The PCR method for identification of P. bahamense var. compressum was also applied on twenty field samples collected with plankton net. P. bahamense var. compressum cells were detected by PCR in five field samples and were confirmed by direct sequencing. From this study, a species-specific primer pair was obtained to identify the target species, P. bahamense var. compressum, among the natural complex communities of seawater.
    Matched MeSH terms: Seawater
  16. Yap CK, Shahbazi A, Zakaria MP
    Bull Environ Contam Toxicol, 2012 Dec;89(6):1205-10.
    PMID: 23052577 DOI: 10.1007/s00128-012-0838-x
    In this study, the ranges of pollutants found in the soft tissues of Perna viridis collected from Kg. Masai and Kg. Sg. Melayu, both located in the Straits of Johore, were 0.85-1.58 μg/g dry weight (dw) for Cd, 5.52-12.2 μg/g dw for Cu, 5.66-8.93 μg/g dw for Ni and 63.4-72.3 μg/g dw for Zn, and 36.4-244 ng/g dry weight for ∑PAHs. Significantly (p < 0.05) higher concentrations of Cd, Cu, Ni, Zn and ∑PAHs in the mussels were found in the water of a seaport site at Kg. Masai than a non-seaport site at Kg. Sg. Melayu population. The ratios of low molecular weight/high molecular weight hydrocarbons (2.94-3.42) and fluoranthene/pyrene (0.43-0.45) in mussels from both sites indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using the soft tissues of P. viridis as a biomonitor of PAH contamination and bioavailability in the coastal waters of Peninsular Malaysia.
    Matched MeSH terms: Seawater/chemistry
  17. Zulkifli SZ, Ismail A, Mohamat-Yusuff F, Arai T, Miyazaki N
    Bull Environ Contam Toxicol, 2010 May;84(5):568-73.
    PMID: 20411236 DOI: 10.1007/s00128-010-9998-8
    Present study was conducted to evaluate current status of trace elements contamination in the surface sediments of the Johor Strait. Iron (2.54 +/- 1.24%) was found as the highest occurring element, followed by those of zinc (210.45 +/- 115.4 microg/g), copper (57.84 +/- 45.54 microg/g), chromium (55.50 +/- 31.24 microg/g), lead (52.52 +/- 28.41 microg/g), vanadium (47.76 +/- 25.76 microg/g), arsenic (27.30 +/- 17.11 microg/g), nickel (18.31 +/- 11.77 microg/g), cobalt (5.13 +/- 3.12 microg/g), uranium (4.72 +/- 2.52 microg/g), and cadmium (0.30 +/- 0.30 microg/g), respectively. Bioavailability of cobalt, nickel, copper, zinc, arsenic and cadmium were higher than 50% of total concentration. Vanadium, copper, zinc, arsenic and cadmium were found significantly different between the eastern and western part of the strait (p < 0.05). Combining with other factors, Johor Strait is suitable as a hotspot for trace elements contamination related studies.
    Matched MeSH terms: Seawater/chemistry*
  18. Zahed MA, Nabi Bidhendi G, Pardakhti A, Esmaili-Sari A, Mohajeri S
    Bull Environ Contam Toxicol, 2009 Dec;83(6):899-902.
    PMID: 19760353 DOI: 10.1007/s00128-009-9874-6
    Polychlorinated biphenyl (PCB) was detected as isomer groups (congener numbers 28, 52, 101, 118, 138, 153 and 180) in the coastal water and sediment of four stations around Shadegan wetland protected area in the northwestern part of the Persian Gulf. Total PCB concentration range was 8-375 ng/L in water and 3.4-50.2 μg/g in sediment. Concentration of different congeners and chromatogram indicates that the source of PCB in this area can be Clophen A60; it used for long time in Iranian electronic industries. Other chlorinated hydrocarbons such as lindane, DDT and their metabolites were also present in the samples.
    Matched MeSH terms: Seawater/chemistry*
  19. Zahed MA, Aziz HA, Isa MH, Mohajeri L
    Bull Environ Contam Toxicol, 2010 Apr;84(4):438-42.
    PMID: 20224975 DOI: 10.1007/s00128-010-9954-7
    The effects of initial oil concentration and the Corexit 9500 dispersant on the rate of bioremediation of petroleum hydrocarbons were investigated with a series of ex-situ seawater samples. With initial oil concentrations of 100, 500, 1,000 and 2,000 mg/L, removal of total petroleum hydrocarbons (TPHs) with dispersant were 67.3%, 62.5%, 56.5% and 44.7%, respectively, and were 64.2%, 55.7%, 48.8% and 37.6% without dispersant. The results clearly indicate that the presence of dispersant enhanced crude oil biodegradation. Lower concentrations of crude oil demonstrated more efficient hydrocarbon removal. Based on these findings, bioremediation is not recommended for crude oil concentrations of 2,000 mg/L or higher.
    Matched MeSH terms: Seawater/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links