Displaying publications 1 - 20 of 234 in total

Abstract:
Sort:
  1. Jaafar NR, Littler D, Beddoe T, Rossjohn J, Illias RM, Mahadi NM, et al.
    Acta Crystallogr F Struct Biol Commun, 2016 11 01;72(Pt 11):831-839.
    PMID: 27827354
    Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Å resolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.
    Matched MeSH terms: Sequence Alignment
  2. Sharif S, Arshad SS, Hair-Bejo M, Omar AR, Zeenathul NA, Fong LS, et al.
    Acta Vet Scand, 2010 Jan 06;52:1.
    PMID: 20053278 DOI: 10.1186/1751-0147-52-1
    The descriptive distribution and phylogeny of feline coronaviruses (FCoVs) were studied in cats suspected of having feline infectious peritonitis (FIP) in Malaysia. Ascitic fluids and/or biopsy samples were subjected to a reverse transcription polymerase chain reaction (RT-PCR) targeted for a conserved region of 3'untranslated region (3'UTR) of the FCoV genome. Eighty nine percent of the sampled animals were positive for the presence of FCoV. Among the FCoV positive cats, 80% of cats were males and 64% were below 2 years of age. The FCoV positive cases included 56% domestic short hair (DSH), 40% Persian, and 4% Siamese cats. The nucleotide sequences of 10 selected amplified products from FIP cases were determined. The sequence comparison revealed that the field isolates had 96% homology with a few point mutations. The extent of homology decreased to 93% when compared with reference strains. The overall branching pattern of phylogenetic tree showed two distinct clusters, where all Malaysian isolates fall into one main genetic cluster. These findings provided the first genetic information of FCoV in Malaysia.
    Matched MeSH terms: Sequence Alignment
  3. Chong LK, Omar AR, Yusoff K, Hair-Bejo M, Aini I
    Acta Virol., 2001;45(4):217-26.
    PMID: 11885928
    The complete nucleotide sequences encoding precursor polyprotein (VP2-VP3-VP4) and VP5 of a highly virulent (hv) infectious bursal disease virus (IBDV), UPM97/61 was determined. Comparison of the deduced amino acid sequences with the published ones revealed 8 common amino acid substitutions, which were found only in the hv IBDV including the UPM97/61 strain. Three of the amino acid substitutions (222 Ala, 256 Ile and 294 Ile) were used as a marker for determining hv IBDV strains. The other five substitutions (685 Asn, 715 Ser, 751 Asp, 990 Val and 1005 Ala) were also conserved in hv IBDV strains isolated in various countries. UPM97/61 strain demonstrated also 8 unique amino acid substitutions of which 3 were in VP2, 4 in VP3 and 1 in VP4. There was 1 unique amino acid substitution in VP5 at position 19 (Asp-->Gly) not found in other strains. However, all the strains have a conserved 49 Arg. The amino acid sequence of UPM97/61 strain differed by 1.09% from the Japanese (OKYM) and Hong Kong (HK46) strains, and by 1.48% from the Israeli (IBDVKS) and European (UK661) strains. Hence, UPM97/61 is more closely related to the hv strains from Asia. However, phylogenetic analysis indicated that the origin of UPM97/61 might be the same as that of other hv strains isolated from other parts of the world.
    Matched MeSH terms: Sequence Alignment
  4. Kianizadeh M, Aini I, Omar AR, Yusoff K, Sahrabadi M, Kargar R
    Acta Virol., 2002;46(4):247-51.
    PMID: 12693862
    Nine Newcastle disease virus (NDV) isolates from Newcastle disease (ND) outbreaks in different regions of Iran were characterized at molecular level. Sequence analysis revealed that the isolates shared two pairs of arginine and a phenylalanine at the N-terminus of the fusion (F) protein cleavage site similarly to other velogenic isolates of NDV characterized earlier. Eight of the nine isolates had the same amino acid sequence as VOL95, a Russian NDV isolate from 1995. However, one isolate, MK13 showed 5 amino acid substitutions, of which 3 have been reported for other velogenic NDV isolates. These results suggest that the origin of the outbreaks of ND in different parts of Iran in 1995-1998 is VOL95.
    Matched MeSH terms: Sequence Alignment
  5. Muthuchelvan D, Venkataramanan R, Hemadri D, Sanyal A, Tosh C
    Acta Virol., 2001 Jun;45(3):159-67.
    PMID: 11774894
    Partial nucleotide sequences of 1D gene of 38 isolates of foot-and-mouth disease virus (FMDV) of serotypes O, A and Asia 1 originating from various parts of India were determined. Field materials were subjected straight to RNA extraction, reverse transcription - PCR (RT-PCR) and sequencing. Also 3 FMDV vaccine strains, IND R2/75 (serotype O), IND 63/72 (serotype Asia 1) and IND 17/77 (serotype A) were included in the analysis. The seqences were compared mutually as well as with available corresponding sequences of other FMDV isolates, and their phylogenetic relationships were calculated. The deduced amino acid sequences showed that the serotype O isolates were relatively conserved as compared to serotype Asia 1 or A isolates from India. In phylogenetic analysis, the serotype O viruses clustered in two genotypes, one including the European vaccine strain (O1/K) and the other represented by the isolates from Bangladesh, India, Nepal and Turkey. The serotype Asia 1 viruses clustered in two groups of single genotype where the prototype strain from Pakistan (PAK 1/54) formed one group and the other was formed by the isolates from Bangladesh, Bhutan, India, Israel and Nepal. In serotype A viruses three well-differentiated genotypes were observed. The isolates from Azerbaijan, Bangladesh, Malaysia and India formed the first genotype. The second genotype was formed by isolates from Iran, Saudi Arabia and Turkey, while two recent Iranian isolates represented the third genotype. In India, the prevalence of at least one genotype could be identified in each serotype. This evolutionary clustering of isolates from the neighbor countries is not surprising, since these countries share border with India. The genetic relatedness between sequences of isolates from India and those from distant places is indicative of spread of the virus between the countries. Of importance is the fact that clinical materials proved useful for rapid generation of sequences and subsequent studying of molecular epidemiology of the disease.
    Matched MeSH terms: Sequence Alignment
  6. Choo QC, Samian MR, Najimudin N
    Appl Environ Microbiol, 2003 Jun;69(6):3658-62.
    PMID: 12788777
    In this paper, we report the cloning and characterization of three Paenibacillus azotofixans DNA regions containing genes involved in nitrogen fixation. Sequencing analysis revealed the presence of nifB1H1D1K1 gene organization in the 4,607-bp SacI DNA fragment. This is the first report of linkage of a nifB open reading frame upstream of the structural nif genes. The second (nifB2H2) and third (nifH3) nif homologues are confined within the 6,350-bp HindIII and 2,840-bp EcoRI DNA fragments, respectively. Phylogenetic analysis demonstrated that NifH1 and NifH2 form a monophyletic group among cyanobacterial NifH proteins. NifH3, on the other hand, clusters among NifH proteins of the highly divergent methanogenic archaea.
    Matched MeSH terms: Sequence Alignment
  7. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Sequence Alignment
  8. Vignesvaran K, Alias Z
    Arch Insect Biochem Physiol, 2016 Jul;92(3):210-21.
    PMID: 27075600 DOI: 10.1002/arch.21332
    Drosophila melanogaster glutathione S-transferase D3 (DmGSTD3) has a shorter amino acid sequence as compared to other GSTs known in the fruit flies. This is due to the 15 amino acid N-terminal truncation in which normally active amino acid residue is located. The work has made use of homology modeling to visualize the arrangement of amino acid side chains in the glutathione (GSH) substrate cavity. The identified amino acids were then replaced with amino acids without functional groups in the side chains and the mutants were analyzed kinetically. Homology modeling revealed that the side chains of Y89 and Y97 were shown facing toward the substrate cavity proposing their possible role in catalyzing the conjugation. Y97A and Y89A GSH gave large changes in Km (twofold increase), Vmax (fivefold reduction), and Kcat /Km values for GSH suggesting their significant role in the conjugation reaction. The replacement at either positions has not affected the affinity of the enzyme toward 1-chloro-2,4-dinitrobenzene as no significant change in values of Kmax was observed. The replacement, however, had significantly reduced the catalytic efficiency of both mutants with (Kcat /Km )(GSH) and (Kcat /Km )(CDNB) of eight- and twofold reduction. The recombinant DmGSTD3 has shown no activity toward 1,2-dichloro-4-nitrobenzene, 2,4-hexadienal, 2,4-heptadienal, p-nitrobenzyl chloride, ethacrynic acid, and sulfobromophthalein. Therefore, it was evident that DmGSTD3 has made use of distal amino acids Y97 and Y89 for GSH conjugation.
    Matched MeSH terms: Sequence Alignment
  9. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    Arch Virol, 2010;155(1):63-70.
    PMID: 19898736 DOI: 10.1007/s00705-009-0540-4
    Sequence analysis of the fusion (F) gene of eight Malaysian NDV isolates showed that all the isolates were categorized as velogenic viruses, with the F cleavage site motif (112)R-R-Q-K-R(116) or (112)R-R-R-K-R(116) at the C-terminus of the F(2) protein and phenylalanine (F) at residue 117 at the N-terminus of the F(1) protein. Phylogenetic analysis revealed that all of the isolates were grouped in two distinct clusters under sub-genotype VIId. The isolates were about 4.8-11.7% genetically distant from sub-genotypes VIIa, VIIb, VIIc and VIIe. When the nucleotide sequences of the eight Malaysian isolates were compared phylogenetically to those of the old published local isolates, it was found that genotype VIII, VII, II and I viruses exist in Malaysia and caused sporadic infections. It is suggested that genotype VII viruses were responsible for most of the outbreaks in recent years.
    Matched MeSH terms: Sequence Alignment
  10. Kusumaningtyas E, Tan WS, Zamrod Z, Eshaghi M, Yusoff K
    Arch Virol, 2004 Sep;149(9):1859-65.
    PMID: 15593426
    Nucleotide sequence comparison of the L gene of the Malaysian neurotropic-viscerotropic velogenic NDV strain AF2240 with other NDV strains revealed a single nucleotide insertion at position 3870. This mutation is compensated by a nucleotide deletion downstream at position 3958 which results in two forms of the L proteins containing a 30-amino acid substitution in Domain V. This compensatory mutation does not correlate with the pathogenicity of the viral strains but it may affect the viral replication as Domain V is believed to play an important role in the replication of paramyxoviruses.
    Matched MeSH terms: Sequence Alignment
  11. Herrero LJ, Lee CS, Hurrelbrink RJ, Chua BH, Chua KB, McMinn PC
    Arch Virol, 2003 Jul;148(7):1369-85.
    PMID: 12827466
    Human enterovirus 71 (EV71) (genus Enterovirus, family Picornaviridae) has been responsible for sporadic cases and outbreaks of hand-foot-and-mouth disease (HFMD), aseptic meningitis, encephalitis and poliomyelitis-like disease in Europe, the U.S.A., Australia and Asia. Recently, there has been an increase in EV71 activity in the Asia-Pacific region, with many outbreaks of HFMD associated with brainstem encephalitis manifesting as neurogenic pulmonary oedema with a high case fatality rate. In 1997, and again in 2000, EV71 outbreaks occurred in peninsular Malaysia. Variations in VP1 gene sequences have been shown to divide all known EV71 field isolates into three distinct genogroups (A, B and C). Consequently we examined the VP1 gene sequences of 43 EV71 strains isolated in peninsular Malaysia between 1997 and 2000 in order to determine the genogroup prevalence over the period. In this study we show that four subgenogroups (B3, B4, C1 and C2) of EV71 circulated in peninsular Malaysia between 1997 and 2000. Subgenogroups B3, B4 and C1 have been identified as the primary cause of the outbreaks of EV71 in peninsular Malaysia. Subgenogroup C1 also displayed endemic circulation from 1997 to 2000 and subgenogroup C2 was present at a low level during the 1997 outbreak.
    Matched MeSH terms: Sequence Alignment
  12. Chua KB, Wang LF, Lam SK, Eaton BT
    Arch Virol, 2002 Jul;147(7):1323-48.
    PMID: 12111411
    A novel paramyxovirus in the genus Rubulavirus, named Tioman virus (TiV), was isolated in 1999 from a number of pooled urine samples of Island Flying Foxes (Pteropus hypomelanus) during the search for the reservoir host of Nipah virus. TiV is antigenically related to Menangle virus (MenV) that was isolated in Australia in 1997 during disease outbreak in pigs. Sequence analysis of the full length genome indicated that TiV is a novel member of the genus Rubulavirus within the subfamily Paramyxovirinae, family Paramyxoviridae. However, there are several features of TiV which make it unique among known paramyxoviruses and rubulaviruses in particular: (1) TiV, like MenV, uses the nucleotide G as a transcriptional initiation site, rather than the A residue used by all other known paramyxoviruses; (2) TiV uses C as the +1 residue for all intergenic regions, a feature not seen for rubulaviruses but common for all other members within the subfamily Paramyxovirinae; (3) Although the attachment protein of TiV has structural features that are conserved in other rubulaviruses, it manifests no overall sequence homology with members of the genus, lacks the sialic acid-binding motif N-R-K-S-C-S and has only two out of the six highly conserved residues known to be important for the catalytic activity of neuraminidase.
    Matched MeSH terms: Sequence Alignment
  13. Munemura T, Saikusa M, Kawakami C, Shimizu H, Oseto M, Hagiwara A, et al.
    Arch Virol, 2003 Feb;148(2):253-63.
    PMID: 12556991
    Enterovirus 71 (EV71) is known as one of the major causative agents of hand, foot and mouse disease (HFMD) and is also associated with neurological manifestations such as aseptic meningitis, polio-like paralysis and encephalitis. Recently, large HFMD outbreaks, involving severe neurological complications, have been experienced in Malaysia, Taiwan and some other countries in the Western-Pacific region. To investigate the genetic diversity of EV71 isolates in a single community in Japan, nucleotide sequences of the VP4 region of 52 EV71 isolates in Yokohama City from 1982 to 2000 were determined and the phylogenetic relationship was compared with other referential EV71 strains in Japan and in the world. There were two major genotypes of EV71 in Yokohama City through the 1980's and 1990's. Six EV71 isolates in the early 1980's in Yokohama City were closely related to those from HFMD outbreaks in Japan and from outbreaks of polio-like paralysis in Europe in the 1970's. During recent HFMD outbreaks in 1997 and 2000, two distinct genotypes of EV71 were co-circulating in Yokohama City as in HFMD outbreaks in Malaysia and Taiwan. However, the genetic diversity of EV71 in Yokohama City was not directly correlated with the severity of HFMD. The results confirmed the circulation of two distinct genotypes of EV71 over the past 20 years in Japan.
    Matched MeSH terms: Sequence Alignment
  14. Arai YT, Yamada K, Kameoka Y, Horimoto T, Yamamoto K, Yabe S, et al.
    Arch Virol, 1997;142(9):1787-96.
    PMID: 9672637
    A simple and rapid single-step reverse transcriptase-polymerase chain reaction (RT-PCR) was used to investigate the nucleoprotein (N) gene of 11 rabies viruses. A conserved set of RT-PCR primers was designed to amplify the most variable region in the N gene. N gene regions were amplified from 6 fixed laboratory viruses, 4 street viruses from dogs in Thailand, and a horse in Zambia. Sequences of the amplified products, together with the database of 91 additional sequences, were analyzed by using PILEUP program of the GCG package. The rabies viruses grouped into at least 9 distinct clusters by < 90% nucleotide similarity of the N gene region: I (4 isolates, USA), II (2 isolates, South America), III (3 isolates, Africa), IV (52 strains, Europe, Middle East, Africa and South America), V (16 isolates, North America and Arctic), VI (17 isolates, Africa), VII (1 isolate, Africa), VIII (6 isolates, Thailand and Malaysia) and IX (1 isolate, Sri Lanka). A unique group of rabies viruses from Thailand and clusters of isolates corresponding to their geographic origin also were determined. The simple and rapid single-step RT-PCR proved to be useful for identifying rabies viruses, and for grouping the viruses into clades by sequence analysis.
    Matched MeSH terms: Sequence Alignment
  15. Gibbs AJ, Mackenzie AM, Abdul-Samad N
    Arch Virol, 1997;142(8):1697-702.
    PMID: 9672629
    A tymoyirus isolated from Malaysian crops of Calopogonium mucunoides has been shown to have virions that are serologically indistinguishable from those of clitoria yellow vein tymovirus. We have sequenced the virion protein (VP) gene of the virus and have found that although it is a member of the cluster that includes CYVV, it is the most distinct member of that cluster (< 62% sequence identity with all the others), and is clearly a separate species, which we propose should be named calopogonium yellow vein virus. Most of the serological specificity of the virions of tymoviruses seems to reside in the C-terminal hexapeptide of the virion protein.
    Matched MeSH terms: Sequence Alignment
  16. Thapa BR, Omar AR, Arshad SS, Hair-Bejo M
    Avian Pathol, 2004 Jun;33(3):359-63.
    PMID: 15223566
    Previously we have shown that avian leukosis virus subgroup J (ALV-J) might be present in chicken flocks from Malaysia based on serological study and also on detection of tissue samples with myelocytic infiltration. In this study, the polymerase chain reaction was used to detect ALV-J sequences from archived frozen samples. Out of 21 tissue samples examined, 16 samples were positive for proviral DNA and four samples for ALV-J RNA. However, only nine samples were found positive for myelocytic infiltration. A total of 465 base pairs equivalent to positions 5305 to 5769 of HPRS-103 from each of the viral RNA positive samples were characterized. Sequence analysis indicated that the samples showed high identity (95.9 to 98.2%) and were close to HPRS-103 with identities between 97.4 and 99.3%. This study indicates that ALV-J-specific sequences can be detected by polymerase chain reaction from frozen tissue samples with and without myelocytic infiltration.
    Matched MeSH terms: Sequence Alignment
  17. Delgado AM, Cook JM
    BMC Evol. Biol., 2009;9:49.
    PMID: 19257899 DOI: 10.1186/1471-2148-9-49
    Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities.
    Matched MeSH terms: Sequence Alignment
  18. Amiruddin N, Lee XW, Blake DP, Suzuki Y, Tay YL, Lim LS, et al.
    BMC Genomics, 2012 Jan 13;13:21.
    PMID: 22244352 DOI: 10.1186/1471-2164-13-21
    BACKGROUND: Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis.

    RESULTS: More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis.

    CONCLUSIONS: This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.

    Matched MeSH terms: Sequence Alignment
  19. Tan CH, Tan KY, Fung SY, Tan NH
    BMC Genomics, 2015;16:687.
    PMID: 26358635 DOI: 10.1186/s12864-015-1828-2
    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.
    Matched MeSH terms: Sequence Alignment
  20. Callari M, Batra AS, Batra RN, Sammut SJ, Greenwood W, Clifford H, et al.
    BMC Genomics, 2018 01 05;19(1):19.
    PMID: 29304755 DOI: 10.1186/s12864-017-4414-y
    BACKGROUND: Patient-Derived Tumour Xenografts (PDTXs) have emerged as the pre-clinical models that best represent clinical tumour diversity and intra-tumour heterogeneity. The molecular characterization of PDTXs using High-Throughput Sequencing (HTS) is essential; however, the presence of mouse stroma is challenging for HTS data analysis. Indeed, the high homology between the two genomes results in a proportion of mouse reads being mapped as human.

    RESULTS: In this study we generated Whole Exome Sequencing (WES), Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing (RNA-seq) data from samples with known mixtures of mouse and human DNA or RNA and from a cohort of human breast cancers and their derived PDTXs. We show that using an In silico Combined human-mouse Reference Genome (ICRG) for alignment discriminates between human and mouse reads with up to 99.9% accuracy and decreases the number of false positive somatic mutations caused by misalignment by >99.9%. We also derived a model to estimate the human DNA content in independent PDTX samples. For RNA-seq and RRBS data analysis, the use of the ICRG allows dissecting computationally the transcriptome and methylome of human tumour cells and mouse stroma. In a direct comparison with previously reported approaches, our method showed similar or higher accuracy while requiring significantly less computing time.

    CONCLUSIONS: The computational pipeline we describe here is a valuable tool for the molecular analysis of PDTXs as well as any other mixture of DNA or RNA species.

    Matched MeSH terms: Sequence Alignment
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links