Displaying publications 1 - 20 of 305 in total

Abstract:
Sort:
  1. Saraswathy Subramaniam TS, Apandi MA, Jahis R, Samsudin MS, Saat Z
    J Trop Med, 2014;2014:814908.
    PMID: 24772175 DOI: 10.1155/2014/814908
    Since 1992, surveillance for acute flaccid paralysis (AFP) cases was introduced in Malaysia along with the establishment of the National Poliovirus Laboratory at the Institute for Medical Research. In 2008, the Ministry of Health, Malaysia, approved a vaccine policy change from oral polio vaccine to inactivated polio vaccine (IPV). Eight states started using IPV in the Expanded Immunization Programme, followed by the remaining states in January 2010. The objective of this study was to determine the viral aetiology of AFP cases below 15 years of age, before and after vaccine policy change from oral polio vaccine to inactivated polio vaccine. One hundred and seventy-nine enteroviruses were isolated from the 3394 stool specimens investigated between 1992 and December 2012. Fifty-six out of 107 virus isolates were polioviruses and the remaining were non-polio enteroviruses. Since 2009 after the sequential introduction of IPV in the childhood immunization programme, no Sabin polioviruses were isolated from AFP cases. In 2012, the laboratory AFP surveillance was supplemented with environmental surveillance with sewage sampling. Thirteen Sabin polioviruses were also isolated from sewage in the same year, but no vaccine-derived poliovirus was detected during this period.
    Matched MeSH terms: Sewage
  2. Suresh K, Smith HV, Tan TC
    Appl Environ Microbiol, 2005 Sep;71(9):5619-20.
    PMID: 16151162
    Blastocystis cysts were detected in 38% (47/123) (37 Scottish, 17 Malaysian) of sewage treatment works. Fifty percent of influents (29% Scottish, 76% Malaysian) and 28% of effluents (9% Scottish, 60% Malaysian) contained viable cysts. Viable cysts, discharged in effluent, provide further evidence for the potential for waterborne transmission of Blastocystis.
    Matched MeSH terms: Sewage/parasitology*
  3. Azizi AB, Lim MP, Noor ZM, Abdullah N
    Ecotoxicol Environ Saf, 2013 Apr;90:13-20.
    PMID: 23294636 DOI: 10.1016/j.ecoenv.2012.12.006
    Experiments were conducted to remove heavy metals (Cr, Cd, Pb, Cu and Zn) from urban sewage sludge (SS) amended with spent mushroom compost (SMC) using worms, Lumbricus rubellus, for 105 days, after 21 days of pre-composting. Five combinations of SS/SMC treatments were prepared in triplicate along with a control for each treatment in microcosms. Analysis of the earthworms' multiplication and growth and laboratory analysis were conducted during the tenth and fifteenth week of vermicomposting. Our result showed that the final biomass of earthworms (mg) and final number of earthworms showed significant differences between treatments i.e. F=554.70, P=0.00 and F=729.10, P=0.00 respectively. The heavy metals Cr, Cd and Pb contained in vermicompost were lower than initial concentrations, with 90-98.7 percent removal on week ten. However, concentrations of Cu and Zn, that are considered as micronutrients, were higher than initial concentrations, but they were 10-200-fold lower than the EU and USA biosolid compost limits and Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). An increment of heavy metals were recorded in vermicompost for all treatments on week fifteen compared to week ten, while concentration of heavy metals in earthworms' tissue were lower compared to vermicompost. Hence, it is suggested that earthworms begin to discharge heavy metals into their surroundings and it was evident that the earthworms' heavy metals excretion period was within the interval of ten to fifteen weeks.
    Matched MeSH terms: Sewage/chemistry*
  4. Chofreh AG, Goni FA, Zeinalnezhad M, Navidar S, Shayestehzadeh H, Klemeš JJ
    J Environ Manage, 2019 Jun 01;239:38-47.
    PMID: 30878873 DOI: 10.1016/j.jenvman.2019.03.023
    Inaccessible hygiene water sources and sanitation are one of the sustainability issues that need to be solved. An attempt to solve this problem is to change the conventional system used in the water supply and sewage treatment to sustainable water and waste management. To transform the system, companies initially need to map their business value chain. However, this process is often not receiving a full attention by the organisation. In an academic perspective, there are limited studies that map the value chains of water and waste systems. To overcome this limitation, the present study aims to map the value chain processes of the water and wastewater utility companies towards a sustainability solution. A review of related studies is used to conduct this study. Khuzestan Urban Water and Sewage company in Iran has been selected as case studies. The mapping results indicate a lack of sustainability integration in a water management system that leads to ineffective and inefficient water management. Value chain mapping process is significant for practitioners, particularly in the water and sewage companies, as a starting point for transforming their conventional water management systems towards sustainability. Experts at the company stated that value chain mapping as part of value chain analysis enables organisations to increase operational efficiency and eliminate waste by 57%.
    Matched MeSH terms: Sewage*
  5. Choi D, Oh JI, Lee J, Park YK, Lam SS, Kwon EE
    Environ Int, 2019 11;132:105037.
    PMID: 31437646 DOI: 10.1016/j.envint.2019.105037
    In an effort to seek a new technical platform for disposal of drinking water treatment sludge (DWTS: alum sludge), pyrolysis of DWTS was mainly investigated in this study. To establish a more sustainable thermolytic platform for DWTS, this study particularly employed CO2 as reactive gas medium. Thus, this study laid great emphasis on elucidating the mechanistic roles of CO2 during the thermolysis of DWTS. A series of the TGA tests of DWTS in CO2 in reference to N2 revealed no occurrence of the heterogeneous reaction between CO2 and the sample surface of DWTS. As such, at the temperature regime before initiating the Boudouard reaction (i.e., ≥700 °C), the mass decay patterns of DWTS in N2 and CO2 were nearly identical. However, the gaseous effluents from lab-scale pyrolysis of DWTS in CO2 in reference to N2 were different. In sum, the homogeneous reactions between CO2 and volatile matters (VMs) evolved from the thermolysis of DWTS led to the enhanced generation of CO. Also, CO2 suppressed dehydrogenation of VMs. Such the genuine mechanistic roles of CO2 in the thermolysis of DWTS subsequently led to the compositional modifications of the chemical species in pyrolytic oil. Furthermore, the biochar composite was obtained as byproduct of pyrolysis of DWTS. Considering that the high content of Al2O3 and Fe-species in the biochar composite imparts a strong affinity for As(V), the practical use of the biochar composite as a sorptive material for arsenic (V) was evaluated at the fundamental levels. This work reported that adsorption of As(V) onto the biochar composite followed the pseudo-second order model and the Freundlich isotherm model.
    Matched MeSH terms: Sewage/chemistry*
  6. Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, et al.
    Environ Pollut, 2024 Jan 01;340(Pt 1):122830.
    PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830
    The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
    Matched MeSH terms: Sewage
  7. Wan Nawawi WM, Jamal P, Alam MZ
    Bioresour Technol, 2010 Dec;101(23):9241-7.
    PMID: 20674345 DOI: 10.1016/j.biortech.2010.07.024
    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.
    Matched MeSH terms: Sewage/microbiology*
  8. Thangalazhy-Gopakumar S, Al-Nadheri WM, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S
    Bioresour Technol, 2015 Feb;178:65-9.
    PMID: 25278112 DOI: 10.1016/j.biortech.2014.09.068
    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.
    Matched MeSH terms: Sewage/chemistry*
  9. Thomes MW, Vaezzadeh V, Zakaria MP, Bong CW
    Environ Sci Pollut Res Int, 2019 Nov;26(31):31555-31580.
    PMID: 31440968 DOI: 10.1007/s11356-019-05936-y
    Southeast Asia has undergone rapid developments in terms of urbanization, economic and population growth. The progress in sewerage treatment infrastructure has not kept pace with such developments. The inadequacy and inefficiency of sewerage systems has prompted the release of untreated sewage into the aquatic environment of Southeast Asia causing many waterborne illnesses since surface water is utilized for recreational, agricultural and aquaculture purposes and, above all, as a source of water intake in Southeast Asia. This paper will review the current data on molecular markers of sewage pollution including sterols and linear alkylbenzenes (LABs) in Southeast Asian aquatic environment to clarify the state of sewage pollution and the competence of sewage treatment plants (STPs) in this area. Despite the importance of sewage pollution research in the region, the number of studies using molecular markers to trace the sources of sewage pollution is limited. So far, indicators of sewage pollution have been investigated in aquatic environments of Indonesia, Vietnam, Malaysia, the Philippines, Thailand, Cambodia and Brunei among Southeast Asian countries. The concentrations and diagnostic ratios of faecal sterols and LABs show the release of untreated and primary treated urban waste into water bodies of these countries. Further studies are required to fill the data gaps in Southeast Asia and come to a better understanding of the trends of sewage pollution in this part of the world. Graphical abstract.
    Matched MeSH terms: Sewage/chemistry*
  10. Mannan S, Fakhru'l-Razi A, Alam MZ
    Water Res, 2005 Aug;39(13):2935-43.
    PMID: 16000208
    The present study was designed to evaluate the potential of microbial adaptation and its affinity to biodegradation as well as bioconversion of soluble/insoluble (organic) substances of domestic wastewater treatment plant (DWTP) sludge (activated domestic sludge) under natural/non-sterilized conditions. The two filamentous fungi, Penicillium corylophilum (WWZP1003) and Aspergillus niger (SCahmA103) were used to achieve the objectives. It was observed that P. corylophilum (WWZP1003) was the better strain compared to A. niger (SCahmA103) for the bioconversion of domestic activated sludge through adaptation. The visual observation in plate culture showed that about 95-98% of cultured microbes (P. corylophilum and A. niger) dominated in treated sludge after 2 days of treatment. In this study, it was also found that the P. corylophilum was capable of removing 94.40% of COD and 98.95% of turbidity of filtrate with minimum dose of inoculum of 10% v/v in DWTP sludge (1% w/w). The pH level was lower (acidic condition) in the fungal treatment and maximum reduction of COD and turbidity was observed (at lower pH). The results for specific resistance to filtration (SRF) showed that the fungi played a great role in enhancing the dewaterability and filterability. In particular, the strain Penicillium had a more significant capability (than A. niger) of reducing 93.20% of SRF compared to the uninoculated sample. Effective results were observed by using fungal inoculum after 2 days of treatment. The developed LSB process is a new biotechnological approach for sludge management strategy.
    Matched MeSH terms: Sewage*
  11. Tan, Y.K., Hiew, M.W.H., Radzi, R., Khairuddin, N.H.
    Jurnal Veterinar Malaysia, 2017;29(2):20-24.
    MyJurnal
    This report describes the complications of obstructive urolithiasis in the lower urinary tract causing urinary bladder rupture in a Jamnapari buck. A 3-year-old Jamnapari buck was presented with the complaint of stranguria, subsequent anuria and a progressively distended abdomen for the past three days. Upon physical examination, body temperature, pulse rate and respiration rate were increased. Uroliths could be felt within the urethra in the ventral abdomen region. A urolith was removed via amputationof the urethral process, but the patency of the urethra could not be established. Transabdominal ultrasound revealed anechoic areas around the bladder, and the bladder was relatively small for a urinary obstructed goat. The bladder wall was thickened and shadow of sludge was observed within the bladder. Abdominocentesis was done and fluid analysis revealed that it was a haemorrhagic effusion. Blood results revealed renal disease, liver disease, muscle injury and haemoconcentration. Retrograde cystourethrogram revealed no urolithswithinthe urethra but there was leakage of the contrast agent from the bladder into the peritoneal cavity. The final diagnosis was complete blockage of the lower urinary tract leading to bladder rupture. Exploratory laparotomy was done and emergency cystorraphy was planned. Due to the poor condition of the urinary bladder with presence of septic peritonitis, the goat was euthanised.
    Matched MeSH terms: Sewage
  12. Sadef Y, Poulsen TG, Habib K, Iqbal T, Nizami AS
    Waste Manag, 2016 Oct;56:396-402.
    PMID: 27342191 DOI: 10.1016/j.wasman.2016.06.018
    Composting can potentially remove organic pollutants in sewage sludge. When estimating pollutant removal efficiency, knowledge of estimate uncertainty is important for understanding estimate reliability. In this study the uncertainty (coefficient of variation, CV) in pollutant degradation rate (K1) and relative concentration at 35days of composting (C35/C0) was evaluated. This was done based on recently presented pollutant concentration data, measured under full-scale composting conditions using two different sampling methods for a range of organic pollutants commonly found in sewage sludge. Non-parametric statistical procedures were used to estimate CV values for K1 and C35/C0 for individual pollutants. These were then used to compare the two sampling methods with respect to CV and to determine confidence intervals for average CV. Results showed that sampling method is crucial for reducing uncertainty. The results further indicated that it is possible to achieve CV values for both K1 and C35/C0 of about 15%.
    Matched MeSH terms: Sewage/analysis*
  13. Shimizu A, Takada H, Koike T, Takeshita A, Saha M, Rinawati, et al.
    Sci Total Environ, 2013 May 1;452-453:108-15.
    PMID: 23500404 DOI: 10.1016/j.scitotenv.2013.02.027
    Seven sulfonamides, trimethoprim, five macrolides, lincomycin and three tetracyclines were measured in 150 water samples of sewage, livestock and aquaculture wastewater, and river and coastal waters, in five tropical Asian countries. The sum of the concentrations of the target antibiotics in sewage and heavily sewage-impacted waters were at sub- to low-ppb levels. The most abundant antibiotic was sulfamethoxazole (SMX), followed by lincomycin and sulfathiazole. The average concentration of SMX in sewage or heavily sewage-impacted waters was 1720 ng/L in Vietnam (Hanoi, Ho Chi Minh, Can Tho; n=15), 802ng/L in the Philippines (Manila; n=4), 538 ng/L in India (Kolkata; n=4), 282 ng/L in Indonesia (Jakarta; n=10), and 76 ng/L in Malaysia (Kuala Lumpur; n=6). These concentrations were higher than those in Japan, China, Europe, the US and Canada. A predominance of sulfonamides, especially SMX, is notable in these tropical countries. The higher average concentrations, and the predominance of SMX, can be ascribed to the lower cost of the antibiotics. Both the concentration and composition of antibiotics in livestock and aquaculture wastewater varied widely. In many cases, sulfamethazine (SMT), oxytetracycline (OTC), lincomycin, and SMX were predominant in livestock and aquaculture wastewater. Both human and animal antibiotics were widely distributed in the respective receiving waters (i.e., the Mekong River and Manila Bay). SMT/SMX ratios indicate a significant contribution from livestock wastewater to the Mekong River and nearby canals, with an estimated ~10% of river water SMX derived from such wastewater. Mass flow calculations estimate that 12 tons of SMX is discharged annually from the Mekong River into the South China Sea. Riverine inputs of antibiotics may significantly increase the concentration of such antibiotics in the coastal waters.
    Matched MeSH terms: Sewage/analysis
  14. Poh PK, Ong YH, Arumugam K, Nittami T, Yeoh HK, Bessarab I, et al.
    Water Environ Res, 2021 Nov;93(11):2598-2608.
    PMID: 34260796 DOI: 10.1002/wer.1611
    Temperature is known to influence the operational efficiency of enhanced biological phosphorus removal (EBPR) systems. This study investigated the impact of thermal stress above 30°C on the properties of an EBPR community established with tropical inoculum. The results confirmed the stability of the 30°C EBPR system with high P-removal efficiency over 210 days. Accumulibacter was abundant in the community. When the EBPR sludge was subjected to a sudden temperature increase to 35°C under multiple cycles of anaerobic-aerobic phases, each lasting 4 h, high P-removal was maintained over 2 days, before gradually failing when the Competibacter appeared to outcompete Accumulibacter. These data suggested that the EBPR capacity is robust when subjected to occasional thermal stress. However, it could not be maintained even for a short time under temperature stress at 40°C. Thus, the threshold temperature for tropical EBPR failure is between 35°C and 40°C. PRACTITIONER POINTS: EBPR was stably maintained at 30°C with Accumulibacter being dominant. Good EBPR activities persisted for a short period at 35°C. EBPR was deteriorated at 40°C. The threshold temperature for tropical EBPR failure is between 35°C and 40°C.
    Matched MeSH terms: Sewage
  15. Igwegbe CA, Obiora-Okafo IA, Iwuozor KO, Ghosh S, Kurniawan SB, Rangabhashiyam S, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(8):11004-11026.
    PMID: 35001268 DOI: 10.1007/s11356-021-17992-4
    Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.
    Matched MeSH terms: Sewage
  16. Alam MZ, Fakhru'l-Razi A, Molla AH, Roychoudhury PK
    PMID: 11545349
    This study was conducted to evaluate the effect of an eminent decay fungus, Phanerocheate chrysosporium of organic residues on wastewater sludge for its improvement through decomposition and separation of waste particles by Liquid State Bioconversion (LSB). The effect of fungal treatment was compared to uninoculated (Control) at three different harvests 7, 14 and 21 days after inoculation (DAI). The observed results showed that the weight loss and solid content of wastewater sludge were significantly influenced by Phanerocheate chrysosporium. Both parameters were highly influenced at 7 DAI. The COD and pH of wastewater sludge were also highly influenced by fungal treatment.
    Matched MeSH terms: Sewage/chemistry*
  17. Lim CL, Morad N, Teng TT, Ismail N
    J Hazard Mater, 2009 Aug 30;168(1):383-9.
    PMID: 19303709 DOI: 10.1016/j.jhazmat.2009.02.061
    The H(2)O(2)/pyridine/Cu(II) advanced oxidation system was used to assess the efficiency of the treatment of a 1 g L(-1) Terasil Red R dye solution. This system was found to be capable in reducing the concentration of chemical oxygen demand (COD) of the dye solution up to 90%, and achieving 99% in decolorization at the optimal concentration of 5.5mM H(2)O(2), 38 mM pyridine and 1.68 mM Cu(II). The final concentration of COD was recorded at 117 mg L(-1) and color point at 320 PtCo. Full 2(4) factorial design and the response surface methodology using central composite design (CCD) were utilized in the screening and optimization of this study. Treatment efficiency was found to be pH independent. The amount of sludge generation was in the range of 100-175 mg L(-1) and the sludge produced at the optimal concentration was 170 mg L(-1).
    Matched MeSH terms: Sewage
  18. Mat Yasin NMF, Hossain MS, H P S AK, Zulkifli M, Al-Gheethi A, Asis AJ, et al.
    Polymers (Basel), 2020 Oct 14;12(10).
    PMID: 33066451 DOI: 10.3390/polym12102353
    The refining of the crude palm oil (CPO) generates the palm oil refinery effluent (PORE). The presence of high contents of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, and suspended solids (SS) in PORE encourages the determination of an effective treatment process to minimize the environmental pollution and preserve aquatic life. In the present study, a biodegradable natural polymer, namely tannin, was utilized as a coagulant to treat PORE. The coagulation experiment was conducted using a jar test apparatus. The tannin coagulation efficiency was evaluated based on the BOD, COD, turbidity, and SS removal from PORE by varying the tannin dose (50-300 mg/L), pH (pH 4-10), treatment time (15-90 min), and sedimentation time (15-90 min). It was found that the maximum removal of BOD, COD, turbidity, and SS was 97.62%, 88.89%, 93.01%, and 90.21%, respectively, at pH 6, a tannin dose of 200 mg/L, 60 min of coagulation time, and 60 min of sedimentation time. Analyses of isotherm models revealed that the Freundlich isotherm model was well fitted with the coagulation study. Kinetics studies show that the pseudo-second-order kinetics model was the well-fitted kinetics model for the BOD, COD, turbidity, and SS removal from PORE using tannin as a polymeric coagulant. The determination of thermodynamics parameters analyses revealed that BOD, COD, turbidity, and SS removal from PORE was spontaneous, exothermic, and chemical in nature. The finding of the present study shows that tannin as a natural polymeric coagulant would be utilized in PORE treatment to avoid toxic sludge generation.
    Matched MeSH terms: Sewage
  19. Alam MZ, Fakhru'l-Razi A, Molla AH
    PMID: 15332668
    A laboratory-scale study was undertaken to evaluate the liquid state bioconversion (LSB) in terms of biodegradation of microbially treated domestic wastewater sludge (biosolids) as well as its kinetics. The potential fungal strains and process factors developed from previous studies were used throughout the study. The results presented in this study showed that an effective biodegradation occurred with the biosolids (sludge cake) accumulated. The maximum biosolids (sludge cake) accumulated (93.8 g/kg of liquid sludge) enriched with the biomass protein (30.2 g/kg of dry biosolids), was achieved which improved the effluent quality by enhancing the removal of chemical oxygen demand (COD), reducing sugar (RS), soluble protein (SP), total dissolved solids (TDS), and total suspended solids (TSS). The higher reduction of specific resistance to filtration (SRF) was observed during bioconversion process. The kinetics results showed that the experimental data were better fitted for the biodegradation efficiency, and biosolids accumulation and biodegradation rate.
    Matched MeSH terms: Sewage/chemistry*
  20. Abdul Zali M, Juahir H, Ismail A, Retnam A, Idris AN, Sefie A, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20717-20736.
    PMID: 33405159 DOI: 10.1007/s11356-020-11680-5
    Sewage contamination is a principal concern in water quality management as pathogens in sewage can cause diseases and lead to detrimental health effects in humans. This study examines the distribution of seven sterol compounds, namely coprostanol, epi-coprostanol, cholesterol, cholestanol, stigmasterol, campesterol, and β-sitosterol in filtered and particulate phases of sewage treatment plants (STPs), groundwater, and river water. For filtered samples, solid-phase extraction (SPE) was employed while for particulate samples were sonicated. Quantification was done by using gas chromatography-mass spectrometer (GC-MS). Faecal stanols (coprostanol and epi-coprostanol) and β-sitosterol were dominant in most STP samples. Groundwater samples were influenced by natural/biogenic sterol, while river water samples were characterized by a mixture of sources. Factor loadings from principal component analysis (PCA) defined fresh input of biogenic sterol and vascular plants (positive varimax factor (VF)1), aged/treated sewage sources (negative VF1), fresh- and less-treated sewage and domestic sources (positive VF2), biological sewage effluents (negative VF2), and fresh-treated sewage sources (VF3) in the samples. Association of VF loadings and factor score values illustrated the correlation of STP effluents and the input of biogenic and plant sterol sources in river and groundwater samples of Linggi. This study focuses on sterol distribution and its potential sources; these findings will aid in sewage assessment in the aquatic environment.
    Matched MeSH terms: Sewage/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links