Displaying publications 1 - 20 of 229 in total

Abstract:
Sort:
  1. Ude CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, et al.
    PLoS One, 2014;9(6):e98770.
    PMID: 24911365 DOI: 10.1371/journal.pone.0098770
    In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model.
    Matched MeSH terms: Sheep
  2. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    Int J Pharm, 2020 Aug 30;586:119499.
    PMID: 32505580 DOI: 10.1016/j.ijpharm.2020.119499
    The tight junctions between capillary endothelial cells of the blood-brain barrier (BBB) restricts the entry of therapeutics into the brain. Potential of the intranasal delivery tool has been explored in administering the therapeutics directly to the brain, thus bypassing BBB. The objective of this study was to develop and optimize an intranasal mucoadhesive nanoemulsion (MNE) of asenapine maleate (ASP) in order to enhance the nasomucosal adhesion and direct brain targetability for improved efficacy and safety. Box-Behnken statistical design was used to recognize the crucial formulation variables influencing droplet size, size distribution and surface charge of ASP-NE. ASP-MNE was obtained by incorporating GRAS mucoadhesive polymer, Carbopol 971 in the optimized NE. Optimized ASP-MNE displayed spherical morphology with a droplet size of 21.2 ± 0.15 nm and 0.355 polydispersity index. Improved ex-vivo permeation was observed in ASP-NE and ASP-MNE, compared to the ASP-solution. Finally, the optimized formulation was found to be safe in ex-vivo ciliotoxicity study on sheep nasal mucosa. The single-dose pharmacokinetic study in male Wistar rats revealed a significant increase in concentration of ASP in the brain upon intranasal administration of ASP-MNE, with a maximum of 284.33 ± 5.5 ng/mL. The time required to reach maximum brain concentration (1 h) was reduced compared to intravenous administration of ASP-NE (3 h). Furthermore, it has been established during the course of present study, that the brain targeting capability of ASP via intranasal administration had enhanced drug-targeting efficiency and drug-targeting potential. In the animal behavioral studies, no extrapyramidal symptoms were observed after intranasal administration of ASP-MNE, while good locomotor activity and hind-limb retraction test established its antipsychotic activity in treated animals. Thus, it can be concluded that the developed intranasal ASP-MNE could be used as an effective and safe tool for brain targeting of ASP in the treatment of psychotic disorders.
    Matched MeSH terms: Sheep
  3. Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, et al.
    Exp Gerontol, 2018 04;104:43-51.
    PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020
    BACKGROUND: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

    METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.

    RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.

    CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.

    Matched MeSH terms: Sheep
  4. Jamali H, Paydar M, Radmehr B, Ismail S
    J Dairy Sci, 2015 Feb;98(2):798-803.
    PMID: 25497824 DOI: 10.3168/jds.2014-8853
    The aims of this study were to investigate the prevalence and to characterize and determine the antibiotic resistance of Yersinia spp. isolates from raw milk. From September 2008 to August 2010, 446 raw milk samples were obtained from farm bulk milk tanks in Varamin, Iran. Yersinia spp. were detected in 29 (6.5%) samples, out of which 23 (79.3%), 5 (17.2%), and 1 (3.4%) were isolated from cow, sheep, and goat raw milk, respectively. The most common species isolated was Yersinia enterocolitica (65.5%), followed by Yersinia frederiksenii (31%), and Yersinia kristensenii (3.4%). Of the 19 Y. enterocolitica isolates, 14 (73.7%) were grouped into bioserotype 1A/O:9, 4 (21.1%) belonged to bioserotype 1B:O8, 1 (5.3%) belonged to bioserotype 4/O:3, and 1 isolate (biotype 1A) was not typable. All the isolates of biotypes 1B and 4harbored both the ystA and ail genes. However, all the isolates of biotype 1A were only positive for the ystB gene. The tested Yersinia spp. showed the highest percentages of resistance to tetracycline (48.3%), followed by ciprofloxacin and cephalothin (each 17.2%), ampicillin (13.8%), streptomycin (6.9%), and amoxicillin and nalidixic acid (each 3.4%). All of the tested isolates demonstrated significant sensitivity to gentamicin and chloramphenicol. Recovery of potentially pathogenic Y. enterocolitica from raw milk indicates high risks of yersiniosis associated with consumption of raw milk.
    Matched MeSH terms: Sheep
  5. Hussain T, Periasamy K, Nadeem A, Babar ME, Pichler R, Diallo A
    Vet Parasitol, 2014 Dec 15;206(3-4):188-99.
    PMID: 25468018
    Haemonchus species are major gastro-intestinal parasites affecting ruminants across the world. The present study aimed to assess the sympatric species distribution, genetic diversity, population structure and frequency of β-tubulin isotype 1 alleles associated with benzimidazole resistance. Internal transcribed spacer 2 (ITS2) sequences revealed three sympatric species of Haemonchus, H. contortus, H. placei and H. longistipes with 12 distinct genotypes circulating among ruminant hosts in Pakistan. High genetic variability was observed in Pakistani Haemonchus isolates at nicotine amide dehydrogenase subunit 4 (ND4) and cytochrome oxidase subunit 1 (COI) gene loci. Intra-population diversity parameters were higher in H. contortus isolates than H. placei. Phylogenetic analysis of ND4 and COI sequences did not reveal clustering of haplotypes originating from a particular host indicating high rate of gene flow among Haemonchus parasites infecting sheep, goat and cattle in Pakistan. ND4 and COI haplotypes from Pakistan were compared to sequences of Haemonchus isolates from 11 countries to elucidate the population structure. Multidimensional scaling (MDS) plot of pairwise FST derived from 531 ND4 haplotypes revealed clustering together of H. contortus from Pakistan, China, Malaysia and Italy while the isolates from Yemen and United States were found to be genetically distinct. With respect to H. placei, isolates from Pakistan were found to be genetically differentiated from isolates of other countries. The tests for selective neutrality revealed negative D statistics and did not reveal significant deviations in Pakistani Haemonchus populations while significant deviation (P < 0.05) was observed in Brazilian and Chinese H. contortus populations. Median Joining (MJ) network of ND4 haplotypes revealed Yemenese H. contortus being closer to H. placei cluster. β-tubulin isotype 1 genotyping revealed 7.86% frequency of Y allele associated with benzimidazole resistance at F200Y locus in Pakistani Haemonchus isolates.
    Matched MeSH terms: Sheep
  6. Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, et al.
    Biomed Mater Eng, 2014;24(4):1715-24.
    PMID: 24948455 DOI: 10.3233/BME-140983
    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.
    Matched MeSH terms: Sheep
  7. Idrus RB, Rameli MA, Low KC, Law JX, Chua KH, Latiff MB, et al.
    Adv Skin Wound Care, 2014 Apr;27(4):171-80.
    PMID: 24637651 DOI: 10.1097/01.ASW.0000445199.26874.9d
    Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns.
    Matched MeSH terms: Sheep
  8. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
    Matched MeSH terms: Sheep
  9. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH
    Exp Gerontol, 2012 Jun;47(6):458-64.
    PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018
    In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
    Study site: Universiti Kebangsaan Malaysia, Kuala Lumpur
    Matched MeSH terms: Sheep
  10. Mohd Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah SH, Ruszymah BH
    Cells Tissues Organs (Print), 2010;192(5):292-302.
    PMID: 20616535 DOI: 10.1159/000318675
    The objective of this study was to regenerate the tracheal epithelium using autologous nasal respiratory epithelial cells in a sheep model. Respiratory epithelium and fibroblast cells were harvested from nasal turbinates and cultured for 1 week. After confluence, respiratory epithelium and fibroblast cells were suspended in autologous fibrin polymerized separately to form a tissue-engineered respiratory epithelial construct (TEREC). A 3 × 2 cm² tracheal mucosal defect was created, and implanted with TEREC and titanium mesh as a temporary scaffold. The control groups were divided into 2 groups: polymerized autologous fibrin devoid of cells (group 1), and no construct implanted (group 2). All sheep were euthanized at 4 weeks of implantation. Gross observation of the trachea showed minimal luminal stenosis formation in the experimental group compared to the control groups. Macroscopic evaluation revealed significant mucosal fibrosis in control group 1 (71.8%) as compared to the experimental group (7%). Hematoxylin and eosin staining revealed the presence of minimal overgrowth of fibrous connective tissue covered by respiratory epithelium. A positive red fluorescence staining of PKH26 on engineered tissue 4 weeks after implantation confirmed the presence of cultured nasal respiratory epithelial cells intercalated with native tracheal epithelial cells. Scanning electron microscopy showed the presence of short microvilli representing immature cilia on the surface of the epithelium. Our study showed that TEREC was a good replacement for a tracheal mucosal defect and was able to promote natural regenesis of the tracheal epithelium with minimal fibrosis. This study highlighted a new technique in the treatment of tracheal stenosis.
    Matched MeSH terms: Sheep
  11. Yaakub H, Masnindah M, Shanthi G, Sukardi S, Alimon AR
    Anim. Reprod. Sci., 2009 Oct;115(1-4):182-8.
    PMID: 19167847 DOI: 10.1016/j.anireprosci.2008.12.006
    Testes from nine male Malin x Santa-Ines rams with an average body weight of 43.1+/-3.53 kg, were used to study the effects of palm kernel cake (PKC) based diet on spermatogenic cells and to assess copper (Cu) levels in liver, testis and plasma in sheep. Animals were divided into three groups and randomly assigned three dietary treatments using restricted randomization of body weight in completely randomized design. The dietary treatments were 60% palm kernel cake plus 40% oil palm frond (PKC), 60% palm kernel cake plus 40% oil palm frond supplemented with 23 mg/kg dry matter of molybdenum as ammonium molybdate [(NH(4))(6)Mo(7)O(24).4H(2)O] and 600 mg/kg dry matter of sulphate as sodium sulphate [Na(2)SO(4)] (PKC-MS) and 60% concentrate of corn-soybean mix+40% oil palm frond (Control), the concentrate was mixed in a ratio of 79% corn, 20% soybean meal and 1% standard mineral mix. The results obtained showed that the number of spermatogonia, spermatocytes, spermatids and Leydig cells were not significantly different among the three treatment groups. However, spermatozoa, Sertoli cells and degenerated cells showed significant changes, which, may be probably due to the Cu content in PKC. Liver and testis Cu levels in the rams under PKC diet was found to be significantly higher (P<0.05) than rams in Control and PKC-MS diets. Plasma Cu levels showed a significant increase (P<0.05) at the end of the experiment as compared to at the beginning of the experiment for PKC and Control. In conclusion, spermatogenesis is normal in rams fed the diet without PKC and PKC supplemented with Mo and S. However spermatogenesis was altered in the PKC based diet probably due to the toxic effects of Cu and the significant changes in organs and plasma. Thus, Mo and S play a major role in reducing the accumulation of Cu in organs.
    Matched MeSH terms: Sheep
  12. Ismail S, Dadrasnia A
    PLoS One, 2015;10(4):e0120931.
    PMID: 25875763 DOI: 10.1371/journal.pone.0120931
    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.
    Matched MeSH terms: Sheep
  13. Karisnan K, Mahzabin T, Bakker AJ, Song Y, Noble PB, Pillow JJ, et al.
    Am J Physiol Regul Integr Comp Physiol, 2018 04 01;314(4):R523-R532.
    PMID: 29212808 DOI: 10.1152/ajpregu.00150.2017
    The preterm diaphragm is functionally immature compared with its term counterpart. In utero inflammation further exacerbates preterm diaphragm dysfunction. We hypothesized that preterm lambs are more vulnerable to in utero inflammation-induced diaphragm dysfunction compared with term lambs. Pregnant ewes received intra-amniotic (IA) injections of saline or 10 mg lipopolysaccharide (LPS) 2 or 7 days before delivery at 121 days (preterm) or ∼145 days (term) of gestation. Diaphragm contractile function was assessed in vitro. Plasma cytokines, diaphragm myosin heavy chain (MHC) isoforms, and oxidative stress were evaluated. Maximum diaphragm force in preterm control lambs was significantly lower (22%) than in term control lambs ( P < 0.001). Despite similar inflammatory cytokine responses to in utero LPS exposure, diaphragm function in preterm and term lambs was affected differentially. In term lambs, maximum force after a 2-day LPS exposure was significantly lower than in controls (by ~20%, P < 0.05). In preterm lambs, maximum forces after 2-day and 7-day LPS exposures were significantly lower than in controls (by ~30%, P < 0.05). Peak twitch force after LPS exposure was significantly lower in preterm than in controls, but not in term lambs. In term lambs, LPS exposure increased the proportion of MHC-I fibers, increased twitch contraction times, and increased fatigue resistance relative to controls. In preterm diaphragm, the cross-sectional area of embryonic MHC fibers was significantly lower after 7-day versus 2-day LPS exposures. We conclude that preterm lambs are more vulnerable to IA LPS-induced diaphragm dysfunction than term lambs. In utero inflammation exacerbates diaphragm dysfunction and may increase susceptibility to postnatal respiratory failure.
    Matched MeSH terms: Sheep, Domestic
  14. Jantan I, Haque MA, Ilangkovan M, Arshad L
    Int Immunopharmacol, 2019 Aug;73:552-559.
    PMID: 31177081 DOI: 10.1016/j.intimp.2019.05.035
    Zerumbone exhibited various biological properties including in vitro immunosuppressive effects. However, its modulatory activity on the immune responses in experimental animal model is largely unknown. This investigation was conducted to explore the effects of daily treatment of zerumbone (25, 50, and 100 mg/kg) isolated from Zingiber zerumbet rhizomes for 14 days on various cellular and humoral immune responses in Balb/C mice. For measurement of adaptive immunity, sheep red blood cells (sRBC) were used to immunize the mice on day 0 and orally fed with similar doses of zerumbone for 14 days. The effects of zerumbone on phagocytosis, nitric oxide (NO) release, myeloperoxidase (MPO) activity, proliferation of T and B cells, lymphocyte phenotyping, cytokines release in serum by activated T cells, delayed type hypersensitivity (DTH) and immunoglobulins production (IgG and IgM) were investigated. Zerumbone downregulated the engulfment of E. coli by peritoneal macrophages and the release of NO and MPO in a concentration-dependent manner. Zerumbone showed significant and concentration-dependent suppression of T and B lymphocytes proliferation and inhibition of the Th1 and Th2 cytokines release. At higher concentrations of zerumbone, the % expression of CD4+ and CD8+ in splenocytes was significantly inhibited. Zerumbone also concentration-dependently demonstrated strong suppression on sRBC-triggered swelling of mice paw in DTH. Substantial suppression of anti-sRBC immunoglobulins antibody titer was noted in immunized and zerumbone-treated mice in a concentration-dependent manner. The potent suppressive effects of zerumbone on the immune responses suggest that zerumbone can be a potential candidate for development of immunosuppressive agent.
    Matched MeSH terms: Sheep
  15. Vadivelu J, Puthucheary SD, Phipps M, Chee YW
    J Med Microbiol, 1995 Mar;42(3):171-4.
    PMID: 7884797
    Eighteen strains of Aeromonas hydrophila from patients with bacteraemia were investigated for possible virulence factors. Cytotoxin and haemolysin were produced by all strains, whereas cholera toxin-like factor was produced by 33% of strains only. Enterotoxin production was not detected. Haemagglutination of guinea-pig, fowl and rabbit erythrocytes was demonstrated by 83%, 67% and 61% of strains, respectively. Fucose- and mannose-sensitive haemagglutinins were predominant. None of the strains agglutinated sheep erythrocytes. Extrachromosomal DNA was detected in 17 strains, 16 of which had a plasmid (3.6-5.1 MDa), the majority being between 4.6 and 5.1 MDa.
    Matched MeSH terms: Sheep
  16. Ilangkovan M, Jantan I, Bukhari SN
    Phytomedicine, 2016 Nov 15;23(12):1441-1450.
    PMID: 27765364 DOI: 10.1016/j.phymed.2016.08.002
    BACKGROUND: Phyllanthin found in many Phyllanthus species has various biochemical and pharmacological properties especially on its hepatoprotective effects. However, its effect on the immune system has not been well documented.

    PURPOSE: In the present study, phyllanthin isolated from Phyllanthus amarus was investigated for its immunosuppressive effects on various cellular and humoral immune responses in Balb/C mice.

    METHODS: Male mice were treated daily at 20, 40 and 100mg/kg of phyllanthin for 14 days by oral gavage. The effects of phyllanthin on cellular immune responses in treated /non treated mice were determined by measuring CD 11b/CD 18 integrin expression, phagocytosis, nitric oxide (NO) production, myeloperoxidase activity (MPO), T and B cells proliferation, lymphocyte phenotyping, serum cytokines production by activated T-cells and delayed type hypersensitivity (DTH). Its effects on humoral immune responses were evaluated by determining the serum levels of lysozyme and ceruloplasmin, and immunoglobulins (IgG and IgM).

    RESULTS: Phyllanthin dose-dependently inhibited CD11b/CD18 adhesion, the engulfment of E. coli by peritoneal macrophages molecules, NO and MPO release in treated mice. Phyllanthin caused significant and dose-dependent inhibition of T and B lymphocytes proliferation and down-regulation of the Th1 (IL-2 and IFN-γ) and Th2 (IL-4) cytokines. Phyllanthin at 100mg/kg caused a significant reduction in the percentage expression of CD4(+) and CD8(+) in splenocytes and the inhibition was comparable to that of cyclosporin A at 50mg/kg. At 100mg/kg, phyllanthin also dose-dependently exhibited strong inhibition on the sheep red blood cell (sRBC)-induced swelling rate of mice paw in DTH. Significant inhibition of serum levels of ceruloplasmin and lysozyme were observed in mice fed with higher doses (40 and 100mg/kg) of phyllanthin. Anti-sRBC immunoglobulins (IgM and IgG) antibody titer was down-regulated in immunized and phyllanthin-treated mice in a dose-dependent manner with maximum inhibition being observed at 100mg/kg.

    CONCLUSION: The strong inhibitory effects of phyllanthin on the cellular and humoral immune responses suggest that phyllanthin may be a good candidate for development into an effective immunosuppressive agent.

    Matched MeSH terms: Sheep
  17. Singh VA, Sim LH, Haseeb A, Ju CTS
    J Orthop Surg (Hong Kong), 2018 10 23;26(3):2309499018806671.
    PMID: 30343651 DOI: 10.1177/2309499018806671
    PURPOSE: Allograft infection remains the greatest challenge in orthopaedic reconstructive surgery especially methicillin-resistant Staphylococcus aureus (MRSA). This risk can be minimized with the use of antibiotic laden allograft (ALA) via iontophoresis. Ceftaroline fosamil (CF) is an advanced-generation cephalosporin, an alternative treatment for MRSA infections. Its antibacterial activity and safety profile are better than vancomycin. CF iontophoresed bone has not been used before. This study was conducted to establish the feasibility of creating a CF ALA and establish the prime conditions for its expenditure.

    METHOD: We created an iontophoresis cell; 3% CF was inserted within medullary segment of goat bone and sealed from external saline solution. The cell operated at the following voltages 30, 60 and 90 V and at the following durations 5, 10, 15, 20, 25 and 30 min. Information regarding optimal conditions for its application was then obtained. After which, correlation between voltages and time with CF concentration in the bone was analysed. A bioavailability test was also conducted to observe the optimal rate of CF elution from the graft.

    RESULT: The optimal condition for the impregnation process is 3% CF at 90 V for 10 min. Bone graft impregnated with CF at optimal conditions can elute above minimum inhibitory concentration of the CF against MRSA for 21 days.

    CONCLUSION: CF iontophoresis was found feasible for allograft impregnation. The technique is simple, inexpensive and reproducible clinically. Iontophoresis offers a novel solution to reduce the rate of perioperative infection in reconstructive surgery involving use of bone graft.

    Matched MeSH terms: Sheep
  18. Xi Loh EY, Fauzi MB, Ng MH, Ng PY, Ng SF, Ariffin H, et al.
    ACS Appl Mater Interfaces, 2018 Nov 21;10(46):39532-39543.
    PMID: 30372014 DOI: 10.1021/acsami.8b16645
    The evaluation of the interaction of cells with biomaterials is fundamental to establish the suitability of the biomaterial for a specific application. In this study, the properties of bacterial nanocellulose/acrylic acid (BNC/AA) hydrogels fabricated with varying BNC to AA ratios and electron-beam irradiation doses were determined. The manner these hydrogel properties influence the behavior of human dermal fibroblasts (HDFs) at the cellular and molecular levels was also investigated, relating it to its application both as a cell carrier and wound dressing material. Swelling, hardness, adhesive force (wet), porosity, and hydrophilicity (dry) of the hydrogels were dependent on the degree of cross-linking and the amount of AA incorporated in the hydrogels. However, water vapor transmission rate, pore size, hydrophilicity (semidry), and topography were similar between all formulations, leading to a similar cell attachment and proliferation profile. At the cellular level, the hydrogel demonstrated rapid cell adhesion, maintained HDFs viability and morphology, restricted cellular migration, and facilitated fast transfer of cells. At the molecular level, the hydrogel affected nine wound-healing genes (IL6, IL10, MMP2, CTSK, FGF7, GM-CSF, TGFB1, COX2, and F3). The findings indicate that the BNC/AA hydrogel is a potential biomaterial that can be employed as a wound-dressing material to incorporate HDFs for the acceleration of wound healing.
    Matched MeSH terms: Sheep
  19. Arshad L, Jantan I, Bukhari SNA
    Drug Des Devel Ther, 2019;13:1421-1436.
    PMID: 31118577 DOI: 10.2147/DDDT.S185191
    Background: 3,5-Bis[4-(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one (BBP), a novel synthetic curcumin analogue has been revealed to possess strong in vitro and in vivo immunosuppressive effects. Purpose: The aim of present study was to prepare and characterize BBP-encapsulated polylactic-co-glycolic acid-block-polyethylene glycol (PLGA-b-PEG) nanoparticles and to evaluate its in vivo efficacy against innate and adaptive immune responses. Methods: Male BALB/c mice were orally administered with BBP alone and BBP- encapsulated nanoparticles equivalent to 5, 10 and 20 mg/kg of BBP in distilled water for a period of 14 days. The immunomodulatory potential was appraised by determining its effects on non-specific and specific immune parameters. Results: The results showed that BBP was successfully encapsulated in PLGA-b-PEG polymer with 154.3 nm size and high encapsulation efficiency (79%) while providing a sustained release for 48 hours. BBP nanoparticles showed significant enhanced dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity, reactive oxygen species (ROS) production, serum levels of ceruloplasmin and lysozyme, immunoglobulins and myloperoxidase (MPO) plasma levels when compared to unencapsulated BBP. Enhanced dose-dependent inhibition was also observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines, and reduction in rat paw oedema in BBP nanoparticles treated mice. At higher doses the suppressive effects of the BBP nanoparticles on various cellular and humoral parameters of immune responses were comparable to that of cyclosporine-A at 20 mg/kg. Conclusion: These findings suggest that the immunosuppressive effects of BBP were enhanced as PLGA-b-PEG nanoparticles.
    Matched MeSH terms: Sheep
  20. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Sheep
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links