Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Harun, S.W., Sulaiman, A.H., Ahmad, H.
    ASM Science Journal, 2009;3(1):27-30.
    MyJurnal
    We demonstrate a multi-wavelength light source using a semiconductor optical amplifier (SOA) in conjunction with an array waveguide grating (AWG). The experimental results showed more than 20 channels with a wavelength separation of 0.8 nm and an optical signal-to-noise ratio of more than 10 dB under room temperature. The channels operated at the wavelength region from 1530.4 nm to 1548.6 nm, which corresponded to AWG filtering wavelengths with SOA drive current of 350 mA. The proposed light source had the advantages of a simple and compact structure, multi-wavelength operation and the system could be upgraded to generate more wavelengths.
    Matched MeSH terms: Signal-To-Noise Ratio
  2. Rashid, A.S., Khatun, S., Ali, B.M., Khazani, A.M.
    ASM Science Journal, 2008;2(1):13-22.
    MyJurnal
    An analysis of the power spectral density of ultra-wideband (UWB) signals is presented in order to evaluate the effects of cumulative interference from multiple UWB devices on victim narrowband systems in their overlay bands like WiFi (i.e. IEEE802.11a) and 3rdG systems (Universal mobile telecommunications system/wideband code division multiple access). In this paper, the performances are studied through the bit-error-rate as a function of signal-to-noise ratio as well as signal-to-interference power ratio using computer simulation and exploiting the realistic channel model (i.e. modified Saleh-Valenzuela model). Several modifications of a generic Gaussian pulse waveform with lengths in the order of nanoseconds were used to generate UWB spectra. Different kinds of pulse modulation (i.e. antipodal and orthogonal) schemes were also taken into account.
    Matched MeSH terms: Signal-To-Noise Ratio
  3. Manimaran, R., Abdul-Rashid, H.A.
    ASM Science Journal, 2008;2(2):133-137.
    MyJurnal
    This paper proposes a signal-to-noise-ratio (SNR) improvement by using an external phase modulator that allowed flexible control of the spectrum amplitude by varying the modulation index for linewidth measurements. Compared with the conventional self-heterodyne detection technique, the results obtained in this study showed an SNR improvement as high as 10 dB. This 10 dB improvement in SNR could help to reduce the usage of a particular length of a single mode fibre (normally about 50 Km) when measuring a linewidth in the region of 10 kHz.
    Matched MeSH terms: Signal-To-Noise Ratio
  4. Said MA, Musarudin M, Zulkaffli NF
    Ann Nucl Med, 2020 Dec;34(12):884-891.
    PMID: 33141408 DOI: 10.1007/s12149-020-01543-x
    OBJECTIVE: 18F is the most extensively used radioisotope in current clinical practices of PET imaging. This selection is based on the several criteria of pure PET radioisotopes with an optimum half-life, and low positron energy that contributes to a smaller positron range. In addition to 18F, other radioisotopes such as 68Ga and 124I are currently gained much attention with the increase in interest in new PET tracers entering the clinical trials. This study aims to determine the minimal scan time per bed position (Tmin) for the 124I and 68Ga based on the quantitative differences in PET imaging of 68Ga and 124I relative to 18F.

    METHODS: The European Association of Nuclear Medicine (EANM) procedure guidelines version 2.0 for FDG-PET tumor imaging has adhered for this purpose. A NEMA2012/IEC2008 phantom was filled with tumor to background ratio of 10:1 with the activity concentration of 30 kBq/ml ± 10 and 3 kBq/ml ± 10% for each radioisotope. The phantom was scanned using different acquisition times per bed position (1, 5, 7, 10 and 15 min) to determine the Tmin. The definition of Tmin was performed using an image coefficient of variations (COV) of 15%.

    RESULTS: Tmin obtained for 18F, 68Ga and 124I were 3.08, 3.24 and 32.93 min, respectively. Quantitative analyses among 18F, 68Ga and 124I images were performed. Signal-to-noise ratio (SNR), contrast recovery coefficients (CRC), and visibility (VH) are the image quality parameters analysed in this study. Generally, 68Ga and 18F gave better image quality as compared to 124I for all the parameters studied.

    CONCLUSION: We have defined Tmin for 18F, 68Ga and 124I SPECT CT imaging based on NEMA2012/IEC2008 phantom imaging. Despite the long scanning time suggested by Tmin, improvement in the image quality is acquired especially for 124I. In clinical practice, the long acquisition time, nevertheless, may cause patient discomfort and motion artifact.

    Matched MeSH terms: Signal-To-Noise Ratio
  5. Ting CM, Samdin SB, Salleh ShH, Omar MH, Kamarulafizam I
    PMID: 23367426 DOI: 10.1109/EMBC.2012.6347491
    This paper applies an expectation-maximization (EM) based Kalman smoother (KS) approach for single-trial event-related potential (ERP) estimation. Existing studies assume a Markov diffusion process for the dynamics of ERP parameters which is recursively estimated by optimal filtering approaches such as Kalman filter (KF). However, these studies only consider estimation of ERP state parameters while the model parameters are pre-specified using manual tuning, which is time-consuming for practical usage besides giving suboptimal estimates. We extend the KF approach by adding EM based maximum likelihood estimation of the model parameters to obtain more accurate ERP estimates automatically. We also introduce different model variants by allowing flexibility in the covariance structure of model noises. Optimal model selection is performed based on Akaike Information Criterion (AIC). The method is applied to estimation of chirp-evoked auditory brainstem responses (ABRs) for detection of wave V critical for assessment of hearing loss. Results shows that use of more complex covariances are better estimating inter-trial variability.
    Matched MeSH terms: Signal-To-Noise Ratio
  6. Abass AK, Al-Mansoori MH, Jamaludin MZ, Abdullah F, Al-Mashhadani TF
    Appl Opt, 2013 Jun 1;52(16):3764-9.
    PMID: 23736332 DOI: 10.1364/AO.52.003764
    We experimentally investigate the performance of L-band multiwavelength Brillouin-Raman fiber laser (MBRFL) under forward and backward pumped environments utilizing a linear cavity. A short length of 1.18 km dispersion compensating fiber is used as a nonlinear gain medium for both Brillouin and Raman gain. Experimental results indicate that the gain in the copumped laser configuration is higher than the gain in the counterpumped configuration. A stable and constant number of Brillouin Stokes lines up to 23 Stokes, with channel spacing of 0.08 nm and more than 20 dB of optical signal to noise ratio, can be generated as well as tuning over 20 nm in the L-band region from 1570 to 1590 nm. The laser generating the Brillouin Stokes lines exhibits flat amplitude bandwidth and high average output power of 0.8 and 1.6 dBm for the copropagation and counterpropagation pumps, respectively. Moreover, the tuning range bandwidth of the MBRFL can be predicted from the oscillated Brillouin pump gain profile.
    Matched MeSH terms: Signal-To-Noise Ratio
  7. Waeleh N, Saripan MI, Musarudin M, Mashohor S, Ahmad Saad FF
    Appl Radiat Isot, 2021 Oct;176:109885.
    PMID: 34385090 DOI: 10.1016/j.apradiso.2021.109885
    The present study was conducted to determine quantitatively the correlation between injected radiotracer and signal-to-noise ratio (SNR) based on differences in physiques and stages of cancer. Eight different activities were evaluated with modelled National Electrical Manufacturers Association (NEMA) of the International Electrotechnical Commission (IEC) PET's phantom with nine different tumour-to-background ratio (TBR). The findings suggest that the optimal value of dosage is required for all categories of patients in the early stages of cancer diagnosis.
    Matched MeSH terms: Signal-To-Noise Ratio
  8. Yahya N, Kamel NS, Malik AS
    Biomed Eng Online, 2014;13(1):154.
    PMID: 25421914 DOI: 10.1186/1475-925X-13-154
    Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images.
    Matched MeSH terms: Signal-To-Noise Ratio*
  9. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F
    Biomed Eng Online, 2017 Jun 07;16(1):68.
    PMID: 28592309 DOI: 10.1186/s12938-017-0352-9
    BACKGROUND: Spectral domain optical coherence tomography (OCT) (SD-OCT) is most widely imaging equipment used in ophthalmology to detect diabetic macular edema (DME). Indeed, it offers an accurate visualization of the morphology of the retina as well as the retina layers.

    METHODS: The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations.

    RESULTS AND CONCLUSION: Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP[Formula: see text] vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively.

    Matched MeSH terms: Signal-To-Noise Ratio
  10. Lim CS, Krishnan G, Sam CK, Ng CC
    Clin Chim Acta, 2013 Jan 16;415:158-61.
    PMID: 23043757 DOI: 10.1016/j.cca.2012.08.031
    Because blocking agent occupies most binding surface of a solid phase, its ability to prevent nonspecific binding determines the signal-to-noise ratio (SNR) and reliability of an enzyme-linked immunosorbent assay (ELISA).
    Matched MeSH terms: Signal-To-Noise Ratio
  11. Safara F, Doraisamy S, Azman A, Jantan A, Abdullah Ramaiah AR
    Comput Biol Med, 2013 Oct;43(10):1407-14.
    PMID: 24034732 DOI: 10.1016/j.compbiomed.2013.06.016
    Wavelet packet transform decomposes a signal into a set of orthonormal bases (nodes) and provides opportunities to select an appropriate set of these bases for feature extraction. In this paper, multi-level basis selection (MLBS) is proposed to preserve the most informative bases of a wavelet packet decomposition tree through removing less informative bases by applying three exclusion criteria: frequency range, noise frequency, and energy threshold. MLBS achieved an accuracy of 97.56% for classifying normal heart sound, aortic stenosis, mitral regurgitation, and aortic regurgitation. MLBS is a promising basis selection to be suggested for signals with a small range of frequencies.
    Matched MeSH terms: Signal-To-Noise Ratio
  12. Shaffiq Said Rahmat SM, Abdul Karim MK, Che Isa IN, Abd Rahman MA, Noor NM, Hoong NK
    Comput Biol Med, 2020 08;123:103840.
    PMID: 32658782 DOI: 10.1016/j.compbiomed.2020.103840
    BACKGROUND: Unoptimized protocols, including a miscentered position, might affect the outcome of diagnostic in CT examinations. In this study, we investigate the effects of miscentering position during CT head examination on the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

    METHOD: We simulate the CT head examination using a water phantom with a standard protocol (120 kVp/180 mAs) and a low dose protocol (100 kVp/142 mAs). The table height was adjusted to simulate miscentering by 5 cm from the isocenter, where the height was miscentered superiorly (MCS) at 109, 114, 119, and 124 cm, and miscentered inferiorly (MCI) at 99, 94, 89, and 84 cm. Seven circular regions of interest were used, with one drawn at the center, four at the peripheral area of the phantom, and two at the background area of the image.

    RESULTS: For the standard protocol, the mean CNR decreased uniformly as table height increased and significantly differed (p 

    Matched MeSH terms: Signal-To-Noise Ratio
  13. Yu K, Feng L, Chen Y, Wu M, Zhang Y, Zhu P, et al.
    Comput Biol Med, 2024 Feb;169:107835.
    PMID: 38096762 DOI: 10.1016/j.compbiomed.2023.107835
    Current wavelet thresholding methods for cardiogram signals captured by flexible wearable sensors face a challenge in achieving both accurate thresholding and real-time signal denoising. This paper proposes a real-time accurate thresholding method based on signal estimation, specifically the normalized ACF, as an alternative to traditional noise estimation without the need for parameter fine-tuning and extensive data training. This method is experimentally validated using a variety of electrocardiogram (ECG) signals from different databases, each containing specific types of noise such as additive white Gaussian (AWG) noise, baseline wander noise, electrode motion noise, and muscle artifact noise. Although this method only slightly outperforms other methods in removing AWG noise in ECG signals, it far outperforms conventional methods in removing other real noise. This is attributed to the method's ability to accurately distinguish not only AWG noise that is significantly different spectrum of the ECG signal, but also real noise with similar spectra. In contrast, the conventional methods are effective only for AWG noise. In additional, this method improves the denoising visualization of the measured ECG signals and can be used to optimize other parameters of other wavelet methods to enhancing the denoised periodic signals, thereby improving diagnostic accuracy.
    Matched MeSH terms: Signal-To-Noise Ratio
  14. Shoaib MA, Hossain MB, Hum YC, Chuah JH, Mohd Salim MI, Lai KW
    Curr Med Imaging, 2020;16(6):739-751.
    PMID: 32723246 DOI: 10.2174/1573405615666190903143330
    BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise.

    AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.

    METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.

    RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.

    CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.

    Matched MeSH terms: Signal-To-Noise Ratio
  15. Nur Azien Yazid, Kamilah Abdullah, Suhaila Abd Halim
    ESTEEM Academic Journal, 2019;15(1):44-55.
    MyJurnal
    Image watermarking embeds identifying information in an image in such a manner that it cannot easily be removed. For the past several years, image digital watermarking has become a necessary element used for hiding secret image and enabling secured communication such as
    privacy, confidentiality, authentication and data integrity. Although numerous watermarking schemes are present in grayscale images, the present work focuses on the RGB color image. This study proposed a new hybrid method that would satisfy the essential needs of modern image watermarking. The color image watermarking is based on the 2D Discrete Cosine Transform and Elgamal cryptosystem. The 2D Discrete Cosine Transform depends on the matrix products, while the Elgamal cryptosystem depends on the discrete logarithm problem. The cryptosystem is combined with existing Arnold transform in watermarking algorithm to enhance the security of secret image. Value of Peak Signal to Noise Ratio was taken as performance evaluation parameters. On the whole, the performance evaluation shows that combining the two algorithms improved the performance of image watermarking.
    Matched MeSH terms: Signal-To-Noise Ratio
  16. Shaik Amir NS, Kang LZ, Mukari SA, Sahathevan R, Chellappan K
    Healthc Technol Lett, 2020 Feb;7(1):1-6.
    PMID: 32190334 DOI: 10.1049/htl.2018.5003
    A critical step in detection of primary intracerebral haemorrhage (ICH) is an accurate assessment of computed tomography (CT) brain images. The correct diagnosis relies on imaging modality and quality of acquired images. The authors present an enhancement algorithm which can improve the clarity of edges on CT images. About 40 samples of CT brain images with final diagnosis of primary ICH were obtained from the UKM Medical Centre in Digital Imaging and Communication in Medicine format. The images resized from 512 × 512 to 256 × 256 pixel resolution to reduce processing time. This Letter comprises of two main sections; the first is denoising using Wiener filter, non-local means and wavelet; the second section focuses on image enhancement using a modified unsharp masking (UM) algorithm to improve the visualisation of ICH. The combined approach of Wiener filter and modified UM algorithm outperforms other combinations with average values of mean square error, peak signal-to-noise ratio, variance and structural similarity index of 2.89, 31.72, 0.12 and 0.98, respectively. The reliability of proposed algorithm was evaluated by three blinded assessors which achieved a median score of 65%. This approach provides reliable validation for the proposed algorithm which has potential in improving image analysis.
    Matched MeSH terms: Signal-To-Noise Ratio
  17. Siti Nur Masturah Abdul Malek, Sayed Inayatullah Shah
    MyJurnal
    In ultrasound imaging there is compromise between the penetration of signal at certain depths into the object and image resolution as the ultrasound probe only can transmit single frequency signals in one transmission. Using curvilinear ultrasound probe with 2 to 5 MHz frequency bandwidth, this study investigated the use of multi-frequency imaging to enhance the quality of phantom images.
    Methods: Siemen Acuson X150 with curvilinear ultrasound transducer was used to scan the organs of interest (kidney, gallbladder and pancreas) of the ultrasound abdominal phantom. Different images at the different selected frequencies (2.5, 3.6 and 5.0 MHz) were created by fixing the position and the orientation of the transducer in each of the scanning process. Different-frequency images were generated and combined to produce composite (multi-frequency) image. Results: In this study, the quality of the composite image was evaluated based on signal-to noise ratio (SNR) and the obtained results were compared with the single frequency images. Besides, the comparison was also made in terms of overall image quality (noise and sharpness of organ outline) through perceived image quality analysis. Based on calculated SNR, the composite image of the kidney, gallbladder and pancreas recorded higher SNR value as compared to the single frequency images. However, through perceived image quality, most of the observers viewed that the quality of the composite image of the kidney, gallbladder and pancreas is poor as compared to the single frequency image. Conclusions: Image quality of ultrasound imaging is improved by combining multiple ultrasound frequency images into a single composite image. This is achieved as high SNR is obtained in the composite image. However, through perceived image quality, the overall image quality of the composite image was poor.
    Matched MeSH terms: Signal-To-Noise Ratio
  18. Sayed IS, Ismail SS
    Int J Biomed Imaging, 2020;2020:9239753.
    PMID: 32308670 DOI: 10.1155/2020/9239753
    In single photon emission computed tomography (SPECT) imaging, the choice of a suitable filter and its parameters for noise reduction purposes is a big challenge. Adverse effects on image quality arise if an improper filter is selected. Filtered back projection (FBP) is the most popular technique for image reconstruction in SPECT. With this technique, different types of reconstruction filters are used, such as the Butterworth and the Hamming. In this study, the effects on the quality of reconstructed images of the Butterworth filter were compared with the ones of the Hamming filter. A Philips ADAC forte gamma camera was used. A low-energy, high-resolution collimator was installed on the gamma camera. SPECT data were acquired by scanning a phantom with an insert composed of hot and cold regions. A Technetium-99m radioactive solution was homogenously mixed into the phantom. Furthermore, a symmetrical energy window (20%) centered at 140 keV was adjusted. Images were reconstructed by the FBP method. Various cutoff frequency values, namely, 0.35, 0.40, 0.45, and 0.50 cycles/cm, were selected for both filters, whereas for the Butterworth filter, the order was set at 7. Images of hot and cold regions were analyzed in terms of detectability, contrast, and signal-to-noise ratio (SNR). The findings of our study indicate that the Butterworth filter was able to expose more hot and cold regions in reconstructed images. In addition, higher contrast values were recorded, as compared to the Hamming filter. However, with the Butterworth filter, the decrease in SNR for both types of regions with the increase in cutoff frequency as compared to the Hamming filter was obtained. Overall, the Butterworth filter under investigation provided superior results than the Hamming filter. Effects of both filters on the quality of hot and cold region images varied with the change in cutoff frequency.
    Matched MeSH terms: Signal-To-Noise Ratio
  19. Bilal M, Shah JA, Qureshi IM, Kadir K
    Int J Biomed Imaging, 2018;2018:7803067.
    PMID: 29610569 DOI: 10.1155/2018/7803067
    Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. TheL1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS), is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated andin vivo2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean square error (MSE) with different acceleration factors for the proposed method. Experimental results also provide a comparison betweenk-tFOCUSS with MEMC and the proposed method.
    Matched MeSH terms: Signal-To-Noise Ratio
  20. Salleh SH, Hussain HS, Swee TT, Ting CM, Noor AM, Pipatsart S, et al.
    Int J Nanomedicine, 2012;7:2873-81.
    PMID: 22745550 DOI: 10.2147/IJN.S32315
    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.
    Matched MeSH terms: Signal-To-Noise Ratio
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links