Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Mohd Nasir MN, Yusoff Z, Al-Mansoori MH, Abdul Rashid HA, Choudhury PK
    Opt Express, 2009 Jul 20;17(15):12829-34.
    PMID: 19654689
    A widely tunable low stimulated Brillouin scattering (SBS) photonic crystal fiber (PCF) based multi-wavelength Brillouin-erbium fiber laser is presented. The fiber laser structure utilizes a pre-amplified Brillouin pump (BP) technique with 100 m of PCF and a tunable band-pass filter within a Fabry-Perot cavity. A total of 14 Brillouin Stokes lines can be tuned over 29 nm from 1540 nm to 1569 nm. The wide tunability was only limited by the bandwidth of the tunable band-pass filter. A constant channel spacing of 0.079 nm and signal to noise ratio (SNR) of more than 20 dB for each Brillouin Stokes lines were also observed.
    Matched MeSH terms: Signal-To-Noise Ratio
  2. Dong L, Caruso F, Lin M, Liu M, Gong Z, Dong J, et al.
    J Acoust Soc Am, 2019 06;145(6):3289.
    PMID: 31255103 DOI: 10.1121/1.5110304
    Whistles emitted by Indo-Pacific humpback dolphins in Zhanjiang waters, China, were collected by using autonomous acoustic recorders. A total of 529 whistles with clear contours and signal-to-noise ratio higher than 10 dB were extracted for analysis. The fundamental frequencies and durations of analyzed whistles were in ranges of 1785-21 675 Hz and 30-1973 ms, respectively. Six tonal types were identified: constant, downsweep, upsweep, concave, convex, and sine whistles. Constant type was the most dominant tonal type, accounting for 32.51% of all whistles, followed by sine type, accounting for 19.66% of all whistles. This paper examined 17 whistle parameters, which showed significant differences among the six tonal types. Whistles without inflections, gaps, and stairs accounted for 62.6%, 80.6%, and 68.6% of all whistles, respectively. Significant intraspecific differences in all duration and frequency parameters of dolphin whistles were found between this study and the study in Malaysia. Except for start frequency, maximum frequency and the number of harmonics, all whistle parameters showed significant differences between this study and the study conducted in Sanniang Bay, China. The intraspecific differences in vocalizations for this species may be related to macro-geographic and/or environmental variations among waters, suggesting a potential geographic isolation among populations of Indo-Pacific humpback dolphins.
    Matched MeSH terms: Signal-To-Noise Ratio
  3. Li M, Mathai A, Lau SLH, Yam JW, Xu X, Wang X
    Sensors (Basel), 2021 Jan 05;21(1).
    PMID: 33466530 DOI: 10.3390/s21010313
    Due to medium scattering, absorption, and complex light interactions, capturing objects from the underwater environment has always been a difficult task. Single-pixel imaging (SPI) is an efficient imaging approach that can obtain spatial object information under low-light conditions. In this paper, we propose a single-pixel object inspection system for the underwater environment based on compressive sensing super-resolution convolutional neural network (CS-SRCNN). With the CS-SRCNN algorithm, image reconstruction can be achieved with 30% of the total pixels in the image. We also investigate the impact of compression ratios on underwater object SPI reconstruction performance. In addition, we analyzed the effect of peak signal to noise ratio (PSNR) and structural similarity index (SSIM) to determine the image quality of the reconstructed image. Our work is compared to the SPI system and SRCNN method to demonstrate its efficiency in capturing object results from an underwater environment. The PSNR and SSIM of the proposed method have increased to 35.44% and 73.07%, respectively. This work provides new insight into SPI applications and creates a better alternative for underwater optical object imaging to achieve good quality.
    Matched MeSH terms: Signal-To-Noise Ratio
  4. Tham ML, Chow CO, Xu YH, Ramli N
    PLoS One, 2016;11(2):e0148625.
    PMID: 26906398 DOI: 10.1371/journal.pone.0148625
    This paper presents a two-level scheduling scheme for video transmission over downlink orthogonal frequency-division multiple access (OFDMA) networks. It aims to maximize the aggregate quality of the video users subject to the playback delay and resource constraints, by exploiting the multiuser diversity and the video characteristics. The upper level schedules the transmission of video packets among multiple users based on an overall target bit-error-rate (BER), the importance level of packet and resource consumption efficiency factor. Instead, the lower level renders unequal error protection (UEP) in terms of target BER among the scheduled packets by solving a weighted sum distortion minimization problem, where each user weight reflects the total importance level of the packets that has been scheduled for that user. Frequency-selective power is then water-filled over all the assigned subcarriers in order to leverage the potential channel coding gain. Realistic simulation results demonstrate that the proposed scheme significantly outperforms the state-of-the-art scheduling scheme by up to 6.8 dB in terms of peak-signal-to-noise-ratio (PSNR). Further test evaluates the suitability of equal power allocation which is the common assumption in the literature.
    Matched MeSH terms: Signal-To-Noise Ratio
  5. Xiangsheng Bao, Quanwen Liu, Haiyan Zhou
    Sains Malaysiana, 2017;46:2169-2177.
    Subei basin is the most promising onshore oil and gas bearing basin in South China. With the deepening of exploration, subtle hydrocarbon reservoirs have gradually become the major target of exploration. Seismic record often shows low signal to noise ratio (SNR), resulting that conventional seismic records have three shortcomings in the identification of subtle reservoirs: difficult to identify small faults; difficult to show the distribution law of sand body; and difficult to find traps. In order to solve this problem, we conducted the research on signal synthesis and decomposition. The research results showed that seismic record of different frequency bands can be restored from original seismic record and both of them contain real stratigraphic information. Based on this, when a certain band or several bands in the original seismic record is affected by noise and result in the reduction of SNR of seismic record, seismic information seriously affected by noise can be abandoned, leaving only less affected seismic information to obtain seismic record with higher SNR. In the collection of actual seismic record, the low and high band seismic information is seriously affected by noise, while medium-band seismic information is less affected. Therefore, based on this, the medium-band seismic information can be restored from the original seismic record to be new record, which is called predominant frequency band seismic record. In this paper, based on the research result, the predominant frequency band seismic record was applied to the two areas of Subei basin and the result showed the research result can be used as a good instruction on well placement and the improvement of drilling success rate.
    Matched MeSH terms: Signal-To-Noise Ratio
  6. Said MA, Musarudin M, Zulkaffli NF
    Ann Nucl Med, 2020 Dec;34(12):884-891.
    PMID: 33141408 DOI: 10.1007/s12149-020-01543-x
    OBJECTIVE: 18F is the most extensively used radioisotope in current clinical practices of PET imaging. This selection is based on the several criteria of pure PET radioisotopes with an optimum half-life, and low positron energy that contributes to a smaller positron range. In addition to 18F, other radioisotopes such as 68Ga and 124I are currently gained much attention with the increase in interest in new PET tracers entering the clinical trials. This study aims to determine the minimal scan time per bed position (Tmin) for the 124I and 68Ga based on the quantitative differences in PET imaging of 68Ga and 124I relative to 18F.

    METHODS: The European Association of Nuclear Medicine (EANM) procedure guidelines version 2.0 for FDG-PET tumor imaging has adhered for this purpose. A NEMA2012/IEC2008 phantom was filled with tumor to background ratio of 10:1 with the activity concentration of 30 kBq/ml ± 10 and 3 kBq/ml ± 10% for each radioisotope. The phantom was scanned using different acquisition times per bed position (1, 5, 7, 10 and 15 min) to determine the Tmin. The definition of Tmin was performed using an image coefficient of variations (COV) of 15%.

    RESULTS: Tmin obtained for 18F, 68Ga and 124I were 3.08, 3.24 and 32.93 min, respectively. Quantitative analyses among 18F, 68Ga and 124I images were performed. Signal-to-noise ratio (SNR), contrast recovery coefficients (CRC), and visibility (VH) are the image quality parameters analysed in this study. Generally, 68Ga and 18F gave better image quality as compared to 124I for all the parameters studied.

    CONCLUSION: We have defined Tmin for 18F, 68Ga and 124I SPECT CT imaging based on NEMA2012/IEC2008 phantom imaging. Despite the long scanning time suggested by Tmin, improvement in the image quality is acquired especially for 124I. In clinical practice, the long acquisition time, nevertheless, may cause patient discomfort and motion artifact.

    Matched MeSH terms: Signal-To-Noise Ratio
  7. Usmani S, Rasheed R, Al Kandari F
    J Nucl Med Technol, 2020 Jun;48(2):181-183.
    PMID: 32111663 DOI: 10.2967/jnmt.119.235986
    Textitis is a new term used to refer to the degenerative-strain osteoarthritis that comes from excessive use of a smart phone. 18F-NaF is increasingly used in diagnosing skeletal pain that is not identified on radiographs. We report a case of a 26-y-old woman with left breast cancer referred for 18F-NaF PET/CT, who was complaining of right thumb and wrist pain. Findings were negative for bone secondaries. Dedicated hands views were acquired on a positron emission mammography scanner and showed focal uptake at the first carpometacarpal and second metacarpophalangeal joints. On the basis of the strong history, the findings were likely due to active arthritic changes caused by repetitive strain injury from excessive text messaging.
    Matched MeSH terms: Signal-To-Noise Ratio*
  8. Suppiah, Pathmanathan K., Mohamad Razali Abdullah
    Movement Health & Exercise, 2012;1(1):61-73.
    MyJurnal
    The ability to produce performances at highest level under physically and emotionally demanding conditions underline the worth of a sportsperson. These stressful conditions places demands on the cognitive resources of the sportsperson; especially in anticipatory actions that require the allocation of cognitive resources. This study investigated the effects of cognitive stress on the temporal anticipation of a timing motor task. A repeated measures design was applied with two independent variables; cognitive stress and levels of difficulty, which included easy, intermediate and difficult. Study participants were 18 male and 18 female undergraduates of the Physical Education programme of Universiti Putra Malaysia. The experimental task involved performing a timing motor task across the three levels of difficulty, under two conditions as follows: (i) without cognitive stress, and (ii) under cognitive stress. Cognitive stress was induced via the continuous subtraction of two from a two-digit number. Participants performed the task individually and the sequence of the experimental task was counter-balanced. A two-way within subject ANOVA was
    performed to ascertain the effects of cognitive stress on the temporal anticipation of the timing motor task. Data yielded significant difference in means for the stress main effect [Λ = .64, F (1.35) = 19.89, p < 0.05]; and the task main effect [Λ = .84, F (2, 34) = 3.35, p < 0.05]. Post hoc comparisons produced a significant difference in the means of the performance of the timing motor task at all three levels of difficulty. Data showed that cognitive stress had an effect on the temporal anticipation of the timing motor task. These results are explained from attentional and the neuromotor noise perspectives. It was concluded that the significant difference in the performance of the experimental task was due to the competition for intentional resources and the decrease of the signal to noise ratio due to cognitive stress.
    Matched MeSH terms: Signal-To-Noise Ratio
  9. Liew SC, Liew SW, Zain JM
    J Digit Imaging, 2013 Apr;26(2):316-25.
    PMID: 22555905 DOI: 10.1007/s10278-012-9484-4
    Tamper localization and recovery watermarking scheme can be used to detect manipulation and recover tampered images. In this paper, a tamper localization and lossless recovery scheme that used region of interest (ROI) segmentation and multilevel authentication was proposed. The watermarked images had a high average peak signal-to-noise ratio of 48.7 dB and the results showed that tampering was successfully localized and tampered area was exactly recovered. The usage of ROI segmentation and multilevel authentication had significantly reduced the time taken by approximately 50 % for the tamper localization and recovery processing.
    Matched MeSH terms: Signal-To-Noise Ratio
  10. Azhar, N. A. A., Tee, H. S., Yee, Y. Y., Awang, M. N. A., Abdul Manan, H., Yusoff, A. N.
    MyJurnal
    Many studies have been carried out to produce magnetic resonance imaging (MRI) phantoms as alternative to water phantom. Among the important properties of a phantom are the T1 and T2 relaxation times. The objective of this study is to investigate the T1 and T2 characteristics of the agarose gel phantoms with different relaxation modifier (gadolinium (III) oxide, Gd2O3) concentrations or [Gd2O3]. Six agarose gel phantoms were prepared with different [Gd2O3]. The T1 (fixed echo time (TE) and different repetition time (TR)) and T2 (fixed TR and different TE) measurements on all phantoms were conducted using the 3-T MRI system via spin echo (SE) and turbo spin echo (TSE) sequences, respectively. The signal-to-noise ratio (SNR) of all phantoms was calculated using Image-J software by implementing the region of interest (ROI) analysis. The SNR against TR and SNR against TE curves were fitted to the exponential equations for saturation, T1 and T2 determination. For every phantom, T1 curve demonstrated that the SNR increased exponentially with increasing TR, while T2 curves showed that the SNR decreased exponentially with increasing TE. Gd2O3 was found to successfully act as the relaxation modifier for the T1 but not the T2 curves. The T1 curve started to show saturated SNR (SNRo) and increasing SNRo for TR > 1000 ms and [Gd2O3] = 0.005 g/ml or higher. These behaviours are explained based on the dipole-dipole interaction that increases in phantoms with higher [Gd2O3], thus shortening the T1 relaxation. However, a systematic change in the T2 parameters with increasing [Gd2O3] was not observed. While Gd2O3 has significant effects on T1 relaxation parameters, the T2 relaxation parameters were minimally affected. With a shorter T1, the Gd2O3 added agarose gel can potentially be used as test phantom in fast imaging sequence, e.g. gradient echo pulse sequences.
    Matched MeSH terms: Signal-To-Noise Ratio
  11. Yahya N, Kamel NS, Malik AS
    Biomed Eng Online, 2014;13(1):154.
    PMID: 25421914 DOI: 10.1186/1475-925X-13-154
    Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe, economical and non-invasive nature. Despite its popularity, the US images, however, are corrupted with speckle noise, which reduces US images qualities, hampering image interpretation and processing stage. Hence, there are many efforts made by researches to formulate various despeckling methods for speckle reduction in US images.
    Matched MeSH terms: Signal-To-Noise Ratio*
  12. Shoaib MA, Hossain MB, Hum YC, Chuah JH, Mohd Salim MI, Lai KW
    Curr Med Imaging, 2020;16(6):739-751.
    PMID: 32723246 DOI: 10.2174/1573405615666190903143330
    BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise.

    AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.

    METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.

    RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.

    CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.

    Matched MeSH terms: Signal-To-Noise Ratio
  13. Mori M, Sagara K, Arai K, Nakatani N, Ohira S, Toda K, et al.
    J Chromatogr A, 2016 Jan 29;1431:131-7.
    PMID: 26755416 DOI: 10.1016/j.chroma.2015.12.064
    Selective separation and sensitive detection of dissolved silicon and boron (DSi and DB) in aqueous solution was achieved by combining an electrodialytic ion isolation device (EID) as a salt remover, an ion-exclusion chromatography (IEC) column, and a corona charged aerosol detector (CCAD) in sequence. DSi and DB were separated by IEC on the H(+)-form of a cation exchange resin column using pure water eluent. DSi and DB were detected after IEC separation by the CCAD with much greater sensitivity than by conductimetric detection. The five-channel EID, which consisted of anion and cation acceptors, cathode and anode isolators, and a sample channel, removed salt from the sample prior to the IEC-CCAD. DSi and DB were scarcely attracted to the anion accepter in the EID and passed almost quantitatively through the sample channel. Thus, the coupled EID-IEC-CCAD device can isolate DSi and DB from artificial seawater and hot spring water by efficiently removing high concentrations of Cl(-) and SO4(2-) (e.g., 98% and 80% at 0.10molL(-1) each, respectively). The detection limits at a signal-to-noise ratio of 3 were 0.52μmolL(-1) for DSi and 7.1μmolL(-1) for DB. The relative standard deviations (RSD, n=5) of peak areas were 0.12% for DSi and 4.3% for DB.
    Matched MeSH terms: Signal-To-Noise Ratio
  14. Sim KS, Kiani MA, Nia ME, Tso CP
    J Microsc, 2014 Jan;253(1):1-11.
    PMID: 24164248 DOI: 10.1111/jmi.12089
    A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.
    Matched MeSH terms: Signal-To-Noise Ratio*
  15. Harun, S.W., Sulaiman, A.H., Ahmad, H.
    ASM Science Journal, 2009;3(1):27-30.
    MyJurnal
    We demonstrate a multi-wavelength light source using a semiconductor optical amplifier (SOA) in conjunction with an array waveguide grating (AWG). The experimental results showed more than 20 channels with a wavelength separation of 0.8 nm and an optical signal-to-noise ratio of more than 10 dB under room temperature. The channels operated at the wavelength region from 1530.4 nm to 1548.6 nm, which corresponded to AWG filtering wavelengths with SOA drive current of 350 mA. The proposed light source had the advantages of a simple and compact structure, multi-wavelength operation and the system could be upgraded to generate more wavelengths.
    Matched MeSH terms: Signal-To-Noise Ratio
  16. Manimaran, R., Abdul-Rashid, H.A.
    ASM Science Journal, 2008;2(2):133-137.
    MyJurnal
    This paper proposes a signal-to-noise-ratio (SNR) improvement by using an external phase modulator that allowed flexible control of the spectrum amplitude by varying the modulation index for linewidth measurements. Compared with the conventional self-heterodyne detection technique, the results obtained in this study showed an SNR improvement as high as 10 dB. This 10 dB improvement in SNR could help to reduce the usage of a particular length of a single mode fibre (normally about 50 Km) when measuring a linewidth in the region of 10 kHz.
    Matched MeSH terms: Signal-To-Noise Ratio
  17. Bilal M, Shah JA, Qureshi IM, Kadir K
    Int J Biomed Imaging, 2018;2018:7803067.
    PMID: 29610569 DOI: 10.1155/2018/7803067
    Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. TheL1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS), is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated andin vivo2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean square error (MSE) with different acceleration factors for the proposed method. Experimental results also provide a comparison betweenk-tFOCUSS with MEMC and the proposed method.
    Matched MeSH terms: Signal-To-Noise Ratio
  18. Khor HL, Liew SC, Zain JM
    J Digit Imaging, 2017 Jun;30(3):328-349.
    PMID: 28050716 DOI: 10.1007/s10278-016-9930-9
    Tampering on medical image will lead to wrong diagnosis and treatment, which is life-threatening; therefore, digital watermarking on medical image was introduced to protect medical image from tampering. Medical images are divided into region of interest (ROI) and region of non-interest (RONI). ROI is an area that has a significant impact on diagnosis, whereas RONI has less or no significance in diagnosis. This paper has proposed ROI-based tamper detection and recovery watermarking scheme (ROI-DR) that embeds ROI bit information into RONI least significant bits, which will be extracted later for authentication and recovery process. The experiment result has shown that the ROI-DR has achieved a good result in imperceptibility with peak signal-to-noise ratio (PSNR) values approximately 48 dB, it is robust against various kinds of tampering, and the tampered ROI was able to recover to its original form. Lastly, a comparative table with the previous research (TALLOR and TALLOR-RS watermarking schemes) has been derived, where these three watermarking schemes were tested under the same testing conditions and environment. The experiment result has shown that ROI-DR has achieved speed-up factors of 22.55 and 26.65 in relative to TALLOR and TALLOR-RS watermarking schemes, respectively.
    Matched MeSH terms: Signal-To-Noise Ratio
  19. Wan Ismail WZ, Sim KS, Tso CP, Ting HY
    Scanning, 2011 Jul-Aug;33(4):233-51.
    PMID: 21611953 DOI: 10.1002/sca.20237
    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts.
    Matched MeSH terms: Signal-To-Noise Ratio
  20. Akbari M, Manesh MR, El-Saleh AA, Reza AW
    ScientificWorldJournal, 2014;2014:128195.
    PMID: 25045725 DOI: 10.1155/2014/128195
    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods.
    Matched MeSH terms: Signal-To-Noise Ratio
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links