Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Azadi S, Azizipour E, Amani AM, Vaez A, Zareshahrabadi Z, Abbaspour A, et al.
    Sci Rep, 2024 Mar 11;14(1):5855.
    PMID: 38467729 DOI: 10.1038/s41598-024-56512-5
    The antifungal efficacy and cytotoxicity of a novel nano-antifungal agent, the Fe3O4@SiO2/Schiff-base complex of Cu(II) magnetic nanoparticles (MNPs), have been assessed for targeting drug-resistant Candida species. Due to the rising issue of fungal infections, especially candidiasis, and resistance to traditional antifungals, there is an urgent need for new therapeutic strategies. Utilizing Schiff-base ligands known for their broad-spectrum antimicrobial activity, the Fe3O4@SiO2/Schiff-base/Cu(II) MNPs have been synthesized. The Fe3O4@SiO2/Schiff-base/Cu(II) MNPs was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Energy-dispersive X-ray (EDX), Vibrating Sample Magnetometer (VSM), and Thermogravimetric analysis (TGA), demonstrating successful synthesis. The antifungal potential was evaluated against six Candida species (C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata, and C. albicans) using the broth microdilution method. The results indicated strong antifungal activity in the range of 8-64 μg/mL with the lowest MIC (8 μg/mL) observed against C. parapsilosis. The result showed the MIC of 32 μg/mL against C. albicans as the most common infection source. The antifungal mechanism is likely due to the disruption of the fungal cell wall and membrane, along with increased reactive oxygen species (ROS) generation leading to cell death. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for cytotoxicity on mouse L929 fibroblastic cells suggested low toxicity and even enhanced cell proliferation at certain concentrations. This study demonstrates the promise of Fe3O4@SiO2/Schiff-base/Cu(II) MNPs as a potent antifungal agent with potential applications in the treatment of life-threatening fungal infections, healthcare-associated infections, and beyond.
    Matched MeSH terms: Silicon Dioxide/chemistry
  2. Hassan NS, Jalil AA, Fei ICM, Razak MTA, Khusnun NF, Bahari MB, et al.
    Chemosphere, 2023 Oct;338:139502.
    PMID: 37453521 DOI: 10.1016/j.chemosphere.2023.139502
    Vanadia (V2O5)-incorporated fibrous silica-titania (V/FST) catalysts, which were successfully synthesized using a hydrothermal method followed by the impregnation of V2O5. The catalysts were then characterized using numerous techniques, including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption analyses, ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared, X-ray photoelectron spectroscopy, and photoluminescence (PL) analyses. The study found that varying the amount of V2O5 (1-10 wt%) had a significant impact on the physicochemical properties of the FST, which in turn improved the photodegradation efficiency of two organic compounds, ciprofloxacin (CIP) and congo red (CR). 5V/FST demonstrated the best performance in degrading 10 mg L-1 of CIP (83%) and CR (100%) at pH 3 using 0.375 g L-1 catalyst under visible light irradiation within 180 min. The highest photoactivity of 5V/FST is mainly due to higher crystallinity and the highest number of V2O5-FST interactions. Furthermore, as demonstrated by PL analysis, the 5V/FST catalyst has the most significant impact on interfacial charge transfer and reduces electron-hole recombination. The photodegradation of both contaminants follows the Langmuir-Hinshelwood pseudo-first-order model, according to the kinetic study. The scavenger investigation demonstrated that hydroxyl radicals and holes dominated species in the system, indicating that the catalyst effectively generated reactive species for pollutant degradation. A possible mechanism was also identified for FST and 5V/FST. Interestingly, V2O5 acts as an electron-hole recombination inhibitor on FST for selective hole oxidation of ciprofloxacin and congo red photodegradation. Finally, the degradation efficiency of the catalyst remained relatively stable even after five cyclic experiments, indicating its potential for long-term use in environmental remediation.
    Matched MeSH terms: Silicon Dioxide/chemistry
  3. Qamar Z, Zeeshan T, Alqahtani WMS, Alanazi A, Khalid Aqeel Almejlad N, Ahmed Khan T, et al.
    Photodiagnosis Photodyn Ther, 2023 Sep;43:103689.
    PMID: 37414110 DOI: 10.1016/j.pdpdt.2023.103689
    AIM: The chief aim of the study was to determine/equate the surface roughness (SRa) and shear bond strength (BS) of pretreated PEEK discs with contemporary air abrasion techniques, photodynamic (PD) therapy by curcumin photosensitizer (PS) and conventional diamond grit straight fissure bur adhered to the composite resin discs.

    MATERIAL AND METHOD: Two hundred discs of PEEK were prepared of 6 mm × 2 mm × 10 mm dimension. The discs were randomly divided into five groups (n = 40) for treatment, Group I: treatment with deionized distilled water (control group); Group II: PD therapy using curcumin PS; Group III: discs treated and abraded with air-borne particles (ABP) silica (30 μm particle size) modified alumina (Al); Group IV: ABP of alumina (110 μm particle size); and Group V: The PEEK were finished with 600-μm grit size straight diamond cutting bur installed in high speed hand-piece. The surface profilometer was used to evaluate the values of surface roughness (SRa) of pretreated PEEK discs. The discs were luted and bonded to discs of composite resin. The bonded PEEK samples were placed in Universal testing machine to evaluate shear BS. The type of BS failure for PEEK discs pre-treated with five regimes respectively was evaluated under stereo-microscope. The data was statistically analyzed using one-way ANOVA and the comparisons between mean values of shear BS were evaluated by Tukey's test (ρ≤0.05).

    RESULTS: The PEEK samples pre-treated with diamond cutting straight fissure burs displayed statistically significant highest value of SRa values (3.258± 0.785 µm). Similarly, the shear BS was observed to be higher for the PEEK discs pre-treated with straight fissure bur (22.37±0.78 MPa). A comparable difference but not statistically significant difference was observed between PEEK discs pre-treated by curcumin PS and ABP-silica modified alumina (ρ ≥ 0.05).

    CONCLUSION: PEEK discs pre-treated with diamond grit straight fissure bur displayed highest values of SRa and shear BS. It was trailed by ABP-Al pre-treated discs; whereas the SRa and shear BS values for the discs pre-treated with ABP-silica modified Al and curcumin PS did not show competitive difference.

    Matched MeSH terms: Silicon Dioxide/chemistry
  4. Wu R, Abdulhameed AS, Yong SK, Li H, ALOthman ZA, Wilson LD, et al.
    Int J Biol Macromol, 2023 Aug 30;247:125806.
    PMID: 37453635 DOI: 10.1016/j.ijbiomac.2023.125806
    An effective hydrothermally prepared chitosan-benzaldehyde/SiO2 adsorbent (CTA-BZA/SiO2) employed functionalization of a CTA biopolymer with SiO2 nanoparticles and BZA. CTA-BZA/SiO2 is an adsorbent that was utilized for the adsorption of an acidic dye (acid red 88, AR88) from synthetic wastewater. The fundamental adsorption variables (A: CTA-BZA/SiO2 dosage (0.02-0.1 g); B: pH (4-10); and C: duration (10-60)) were optimized via the Box-Behnken design (BBD). The Langmuir and Freundlich isotherms (coefficients of determination R2 = 0.99) agreed well with empirical data of AR88 adsorption by CTA-BZA/SiO2. The pseudo-first-order model showed reasonable agreement with the kinetic data of AR88 adsorption by CTA-BZA/SiO2. The maximal AR88 adsorption capacity (qmax) for CTA-BZA/SiO2 was identified to be 252.4 mg/g. The electrostatic attractions between both the positively charged CTA-BZA/SiO2 adsorbent and the AR88 anions, plus the n-π, π-π, and H-bond interactions contribute to the favourable adsorption process. This study reveals that CTA-BZA/SiO2 has the capacity to be a suitable adsorbent for the removal of a wider range of organic dyes from industrial effluents.
    Matched MeSH terms: Silicon Dioxide/chemistry
  5. Abbasi M, Gholizadeh R, Kasaee SR, Vaez A, Chelliapan S, Fadhil Al-Qaim F, et al.
    Sci Rep, 2023 Apr 12;13(1):5987.
    PMID: 37046068 DOI: 10.1038/s41598-023-33095-1
    In recent years, mesoporous silica nanoparticles (MSNs) have been applied in various biomedicine fields like bioimaging, drug delivery, and antibacterial alternatives. MSNs could be manufactured through green synthetic methods as environmentally friendly and sustainable synthesis approaches, to improve physiochemical characteristics for biomedical applications. In the present research, we used Rutin (Ru) extract, a biocompatible flavonoid, as the reducing agent and nonsurfactant template for the green synthesis of Ag-decorated MSNs. Transmission electron microscopy (TEM), zeta-potential, x-ray powder diffraction (XRD), fourier transform infrared (FTIR) spectroscopy analysis, scanning electron microscopy (SEM), brunauer-emmett-teller (BET) analysis, and energy-dispersive system (EDS) spectroscopy were used to evaluate the Ag-decorated MSNs physical characteristics. The antimicrobial properties were evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and also different types of candida. The cytotoxicity test was performed by using the MTT assay. Based on the findings, the significant antimicrobial efficacy of Ru-Ag-decorated MSNs against both gram positive and gram negative bacteria and different types of fungi was detected as well as acceptable safety and low cytotoxicity even at lower concentrations. Our results have given a straightforward and cost-effective method for fabricating biodegradable Ag-decorated MSNs. The applications of these MSNs in the domains of biomedicine appear to be promising.
    Matched MeSH terms: Silicon Dioxide/chemistry
  6. Aziz T, Farid A, Haq F, Kiran M, Ullah N, Faisal S, et al.
    Environ Res, 2023 Apr 01;222:115253.
    PMID: 36702191 DOI: 10.1016/j.envres.2023.115253
    Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.
    Matched MeSH terms: Silicon Dioxide/chemistry
  7. Budiman A, Rusdin A, Subra L, Aulifa DL
    Int J Nanomedicine, 2023;18:5473-5493.
    PMID: 37791322 DOI: 10.2147/IJN.S426120
    In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
    Matched MeSH terms: Silicon Dioxide/chemistry
  8. Gajjala RR, Chinta RR, Gopireddy VSR, Poola S, Balam SK, Chintha V, et al.
    Bioorg Chem, 2022 Dec;129:106205.
    PMID: 36265354 DOI: 10.1016/j.bioorg.2022.106205
    Novel ethyl-4-(aryl)-6-methyl-2-(oxo/thio)-3,4-dihydro-1H-pyrimidine-5-carboxylates were synthesized from one-pot, three-component Biginelli reaction of aryl aldehydes, ethyl acetoacetate and urea/ thiourea by catalytic action of silica supported Bismuth(III) triflate, a Lewis acid. All the synthesized compounds were structurally characterized by spectral (IR, 1H NMR & 13C NMR spectroscopic and Mass spectrometric) and elemental (C, H & N) analyses. The present protocol has deserved novel as, formed the products in high yields with short reaction times, involved eco-friendly methodology and reusable heterogeneous Lewis acid catalyst. The title compounds were screened for in vitro DPPH free radical scavenging antioxidant activity and identified 4i, 4j, 4h & 4f as potential antioxidants. The obtained in vitro results were correlated with molecular docking, ADMET, QSAR, Bioactivity & toxicity risk studies and molecular finger print properties and found that in silico binding affinities were identified in good correlation with in vitro antioxidant activity and studied the structure activity relationship. The molecular docking study has disclosed strong hydrogen bonding interactions of title compounds with aspartic acid (ASP197) aminoacid residue of 2HCK, a complex enzyme of haematopoietic cell kinase and quercetin. Results of toxicology study evaluated for potential risks of compounds have revealed title compounds as safer drugs. In ultimate the study has established ligand's antioxidant potentiality as they effectively binds with ASP197 amino acid of Chain A hence confirms the inhibition of growth of reactive oxygen species in vivo. In addition, the title compounds have been identified as potential blood-brain barrier penetrable entities and efficient central nervous system (CNS) active neuro-protective antioxidant agents.
    Matched MeSH terms: Silicon Dioxide/chemistry
  9. Dorairaj D, Govender N, Zakaria S, Wickneswari R
    Sci Rep, 2022 Nov 23;12(1):20162.
    PMID: 36424408 DOI: 10.1038/s41598-022-24484-z
    Agriculture plays a crucial role in safeguarding food security, more so as the world population increases gradually. A productive agricultural system is supported by seed, soil, fertiliser and good management practices. Food productivity directly correlates to the generation of solid wastes and utilization of agrochemicals, both of which negatively impact the environment. The rice and paddy industry significantly adds to the growing menace of waste management. In low and middle-income countries, rice husk (RH) is an underutilized agro-waste discarded in landfills or burned in-situ. RH holds enormous potential in the development of value-added nanomaterials for agricultural applications. In this study, a simple and inexpensive sol-gel method is described to extract mesoporous silica nanoparticles (MSNs) from UKMRC8 RH using the bottom-up approach. RHs treated with hydrochloric acid were calcinated to obtain rice husk ash (RHA) with high silica purity (> 98% wt), as determined by the X-ray fluorescence analysis (XRF). Calcination at 650 °C for four hours in a box furnace yielded RHA that was devoid of metal impurities and organic matter. The X-ray diffraction pattern showed a broad peak at 2θ≈20-22 °C and was free from any other sharp peaks, indicating the amorphous property of the RHA. Scanning electron micrographs (SEM) showed clusters of spherically shaped uniform aggregates of silica nanoparticles (NPs) while transmission electron microscopy analysis indicated an average particle size of 
    Matched MeSH terms: Silicon Dioxide/chemistry
  10. Oresegun A, Tarif ZH, Ghassan L, Zin H, Abdul-Rashid HA, Bradley DA
    Appl Radiat Isot, 2021 Oct;176:109812.
    PMID: 34166948 DOI: 10.1016/j.apradiso.2021.109812
    Investigation has been made of the radioluminescence dose response of Ge-doped silica flat and cylindrical fibers subjected to 6 and 10 MV photon beams. The fibers have been custom fabricated, obtaining Ge dopant concentrations of 6 and 10 mol%, subsequently cut into 20 mm lengths. Each sample has been exposed under a set of similar conditions, with use made of a fixed field size and source to surface distance (SSD). Investigation of dosimetric performance has involved radioluminescence linearity, dose-rate dependence, energy dependence, and reproducibility. Mass for mass, the 6 mol% Ge-doped samples provided the greater radioluminescence yield, with both flat and cylindrical fibers responding linearly to the absorbed dose. Further found has been that the cylindrical fibers provided a yield some 38% greater than that of the flat fibers. At 6 MV, the cylindrical fibers were also found to exhibit repeatability variation of <1%, superior to that of the flat fibers, offering strong potential for use in real-time dosimetry applications.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  11. Song F, Yang Y, Gopinath SCB
    Biotechnol Appl Biochem, 2021 Jun;68(3):683-689.
    PMID: 32628799 DOI: 10.1002/bab.1980
    A high-performance interdigitated electrode (IDE) biosensing surface was reported here by utilizing self-assembled silica nanoparticle (SiNP). The modified surface was used to evaluate the complementation of hairpin forming region from Mitoxantrone resistance gene 7 (MXR7; liver cancer-related short gene). The conjugated SiNPs on 3-aminopropyl triethoxysilane functionalization were captured with probe sequence on IDE biosensing surface. The physical and chemically modified surface was used to quantify MXR7 and an increment in the current response upon complementation was noticed. Limit of target DNA detection was calculated (1-10 fM) and this label-free detection is at the comparable level to the fluorescent-based sensing. A linear regression was calculated [y = 0.243x - 0.0773; R² = 0.9336] and the sensitivity was 1 fM on the linear range of 1 fM to 10 pM. With the strong attachment of capture DNA on IDE through SiNP, the surface clearly discriminates the specificity (complementary) versus nonspecificity (complete-, single-, and triple-mismatched sequences). This detection strategy helps to determine liver cancer progression and the similar strategy can be followed for other gene sequence complementation.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  12. Lim MSW, Yang TC, Tiong TJ, Pan GT, Chong S, Yap YH
    Ultrason Sonochem, 2021 May;73:105490.
    PMID: 33609992 DOI: 10.1016/j.ultsonch.2021.105490
    Sequentially precipitated Mg-promoted nickel-silica catalysts with ageing performed under various ultrasonic intensities were employed to study the catalyst performance in the partial hydrogenation of sunflower oil. Results from various characterisation studies showed that increasing ultrasonic intensity caused a higher degree of hydroxycarbonate erosion and suppressed the formation of Ni silicates and silica support, which improved Ni dispersion, BET surface area and catalyst reducibility. Growth of silica clusters on the catalyst aggregates were observed in the absence of ultrasonication, which explained the higher silica and nickel silicate content on the outer surface of the catalyst particle. Application of ultrasound also altered the electron density of the Ni species, which led to higher activity and enhanced product selectivity for sonicated catalysts. The catalyst synthesised with ultrasonic intensity of 20.78 Wcm-2 achieved 22.6% increase in hydrogenation activity, along with 28.5% decrease in trans-C18:1 yield at IV = 70, thus supporting the feasibility of such technique.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  13. Rahmat F, Fen YW, Anuar MF, Omar NAS, Zaid MHM, Matori KA, et al.
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670482 DOI: 10.3390/molecules26041061
    In this paper, the structural and optical properties of ZnO-SiO2-based ceramics fabricated from oil palm empty fruit bunch (OPEFB) were investigated. The OPEFB waste was burned at 600, 700 and 800 °C to form palm ash and was then treated with sulfuric acid to extract silica from the ash. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed the existence of SiO2 in the sample. Field emission scanning electron microscopy (FESEM) showed that the particles displayed an irregular shape and became finer after leaching. Then, the solid-state method was used to produce the ZnO-SiO2 composite and the samples were sintered at 600, 800, 1000, 1200 and 1400 °C. The XRD peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity of the composite. FESEM images proved that the grain boundaries were larger as the temperature increased. Upon obtaining the absorbance spectrum from ultraviolet-visible (UV-Vis) spectroscopy, the energy band gaps obtained were 3.192, 3.202 and 3.214 eV at room temperature, 600 and 800 °C, respectively, and decreased to 3.127, 2.854 and 2.609 eV at 1000, 1200 and 1400 °C, respectively. OPEFB shows high potential as a silica source in producing promising optical materials.
    Matched MeSH terms: Silicon Dioxide/chemistry
  14. Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Afnan Uda MN, et al.
    Prep Biochem Biotechnol, 2021;51(1):86-95.
    PMID: 32713293 DOI: 10.1080/10826068.2020.1793174
    A chemical method to synthesize amorphous silica nanoparticles from the incinerated paddy straw has been introduced. The synthesis was conducted through the hydrolysis by alkaline-acidic treatments. As a result, silica particles produced with the sizes were ranging at 60-90 nm, determined by high-resolution microscopy. The crystallinity was confirmed by surface area electron diffraction. Apart from that, chemical and diffraction analyses for both rice straw ash and synthesized silica nanoparticles were conducted by X-ray diffraction and Fourier-transform infrared spectroscopy. The percentage of silica from the incinerated straw was calculated to be 28.3. The prominent surface chemical bonding on the generated silica nanoparticles was with Si-O-Si, stretch of Si-O and symmetric Si-O bonds at peaks of 1090, 471, and 780 cm-1, respectively. To confirm the impurities of the elements in the produced silica, were analyzed using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The stability of silica nanoparticles was investigated using thermogravimetric analysis and zeta potential. The measured size from zeta potential analysis was 411.3-493 nm and the stability of mass reduction was located at 200 °C with final amount of mass reduced ∼88% and an average polydispersity Index was 0.195-0.224.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  15. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2020 Dec 01;164:3155-3162.
    PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162
    The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  16. Onoja E, Wahab RA
    Appl Biochem Biotechnol, 2020 Oct;192(2):585-599.
    PMID: 32495234 DOI: 10.1007/s12010-020-03348-0
    Strategies to immobilize the individual enzymes are crucial for enhancing catalytic applicability and require a controlled immobilization process. Herein, protocol for immobilizing Candida rugosa lipase (CRL) onto modified magnetic silica derived from oil palm leaves ash (OPLA) was optimized for the effects of concentration of CRL, immobilization time, and temperature, monitored by titrimetric and spectrometric methods. XRD and TGA-DTG spectrometric observations indicated that OPLA-silica was well coated over magnetite (SiO2-MNPs) and CRLs were uniformly bound by covalent bonds to SiO2-MNPs (CRL/Gl-A-SiO2-MNPs). The optimized immobilization protocol showed that in the preparation of CRL/Gl-A-SiO2-MNPs, CRL with 68.3 mg/g protein loading and 74.6 U/g specific activity was achieved using 5 mg/mL of CRL, with an immobilization time of 12 h at 25 °C. The present work also demonstrated that acid-pretreated OPLA is a potential source of renewable silica, envisioning its applicability for practical use in enzymatic catalysis on solid support.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  17. Nasiri R, Dabagh S, Meamar R, Idris A, Muhammad I, Irfan M, et al.
    Nanotechnology, 2020 May 08;31(19):195603.
    PMID: 31978907 DOI: 10.1088/1361-6528/ab6fd4
    The present study aims at engineering, fabrication, characterization, and qualifications of papain (PPN) conjugated SiO2-coated iron oxide nanoparticles 'IONPs@SiO2-PPN'. Initially fabricated iron oxide nanoparticles (IONPs) were coated with silica (SiO2) using sol-gel method to hinder the aggregation and to enhance biocompatibility. Next, PPN was loaded as an anticancer agent into the silica coated IONPs (IONPs@SiO2) for the delivery of papain to the HeLa cancer cells. This fabricated silica-coated based magnetic nanoparticle is introduced as a new physiologically-compatible and stable drug delivery vehicle for delivering of PPN to the HeLa cancer cell line. The IONPs@SiO2-PPN were characterized using FT-IR, AAS, FESEM, XRD, DLS, and VSM equipment. Silica was amended on the surface of iron oxide nanoparticles (IONPs, γ-Fe2O3) to modify its biocompatibility and stability. The solvent evaporation method was used to activate PPN vectorization. The following tests were performed to highlight the compatibility of our proposed delivery vehicle: in vitro toxicity assay, in vivo acute systemic toxicity test, and the histology examination. The results demonstrated that IONPs@SiO2-PPN successfully reduced the IC50 values compared with the native PPN. Also, the structural alternations of HeLa cells exposed to IONPs@SiO2-PPN exhibited higher typical hallmarks of apoptosis compared to the cells treated with the native PPN. The in vivo acute toxicity test indicated no clinical signs of distress/discomfort or weight loss in Balb/C mice a week after the intravenous injection of IONPs@SiO2 (10 mg kg-1). Besides, the tissues architectures were not affected and the pathological inflammatory alternations detection failed. In conclusion, IONPs@SiO2-PPN can be chosen as a potent candidate for further medical applications in the future, for instance as a drug delivery vehicle or hyperthermia agent.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  18. Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA
    Sensors (Basel), 2020 Feb 26;20(5).
    PMID: 32111092 DOI: 10.3390/s20051279
    A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  19. Taib M, Tan LL, Abd Karim NH, Ta GC, Heng LY, Khalid B
    Talanta, 2020 Jan 15;207:120321.
    PMID: 31594568 DOI: 10.1016/j.talanta.2019.120321
    An optical aptasensor-based sensing platform for rapid insulin detection was fabricated. Aminated porous silica microparticles (PSiMPs) were synthesized via a facile mini-emulsion method to provide large surface area for covalent immobilization of insulin-binding DNA aptamer (IGA3) by glutaraldehyde cross-linking protocol. A Nickel-salphen type complex with piperidine side chain [Ni(II)-SP] was synthesized with a simple one-pot reaction, and functionalized as an optical label due to strong π-π interaction between aromatic carbons of G-quadruplex DNA aptamer and planar aromatic groups of Ni(II)-SP to form the immobilized IGA3-Ni(II)-SP complex, i.e. the dye-labeled aptamer, thereby bringing yellow colouration to the immobilized G-quartet plane. Optical characterization of aptasensor towards insulin binding was carried out with a fiber optic reflectance spectrophotometer. The maximum reflectance intensity of the immobilized IGA3-Ni(II)-SP complex at 656 nm decreased upon binding with insulin as aptasensor changed to brownish orange colouration in the background. This allows optical detection of insulin as the colour change of aptasensor is dependent on the insulin concentration. The linear detection range of the aptasensor is obtained from 10 to 50 μIU mL-1 (R2 = 0.9757), which conformed to the normal fasting insulin levels in human with a limit of detection (LOD) at 3.71 μIU mL-1. The aptasensor showed fast response time of 40 min and long shelf life stability of >3 weeks. Insulin detection using healthy human serums with informed consent provided by participants suggests the DNA aptamer biosensor was in good agreement with ELISA standard method using BIOMATIK Human INS (Insulin) ELISA Kit.
    Matched MeSH terms: Silicon Dioxide/chemistry
  20. Adil M, Mohd Zaid H, Raza F, Agam MA
    PLoS One, 2020;15(7):e0236837.
    PMID: 32730369 DOI: 10.1371/journal.pone.0236837
    Recent developments propose renewed use of surface-modified nanoparticles (NPs) for enhanced oil recovery (EOR) due to improved stability and reduced porous media retention. The enhanced surface properties render the nanoparticles more suitable compared to bare nanoparticles, for increasing the displacement efficiency of waterflooding. However, the EOR mechanisms using NPs are still not well established. This work investigates the effect of in-situ surface-modified silica nanoparticles (SiO2 NPs) on interfacial tension (IFT) and wettability behavior as a prevailing oil recovery mechanism. For this purpose, the nanoparticles have been synthesized via a one-step sol-gel method using surface-modification agents, including Triton X-100 (non-ionic surfactant) and polyethylene glycol (polymer), and characterized using various techniques. These results exhibit the well-defined spherical particles, particularly in the presence of Triton X-100 (TX-100), with particle diameter between 13 to 27 nm. To this end, SiO2 nanofluids were formed by dispersing nanoparticles (0.05 wt.%, 0.075 wt.%, 0.1 wt.%, and 0.2 wt.%) in 3 wt.% NaCl to study the impact of surface functionalization on the stability of the nanoparticle suspension. The optimal stability conditions were obtained at 0.1 wt.% SiO2 NPs at a basic pH of 10 and 9.5 for TX-100/ SiO2 and PEG/SiO nanofluids, respectively. Finally, the surface-treated SiO2 nanoparticles were found to change the wettability of treated (oil-wet) surface into water-wet by altering the contact angle from 130° to 78° (in case of TX-100/SiO2) measured against glass surface representing carbonate reservoir rock. IFT results also reveal that the surfactant treatment greatly reduced the oil-water IFT by 30%, compared to other applied NPs. These experimental results suggest that the use of surface-modified SiO2 nanoparticles could facilitate the displacement efficiency by reducing IFT and altering the wettability of carbonate reservoir towards water-wet, which is attributed to more homogeneity and better dispersion of surface-treated silica NPs compared to bare-silica NPs.
    Matched MeSH terms: Silicon Dioxide/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links