Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Abbasi M, Gholizadeh R, Kasaee SR, Vaez A, Chelliapan S, Fadhil Al-Qaim F, et al.
    Sci Rep, 2023 Apr 12;13(1):5987.
    PMID: 37046068 DOI: 10.1038/s41598-023-33095-1
    In recent years, mesoporous silica nanoparticles (MSNs) have been applied in various biomedicine fields like bioimaging, drug delivery, and antibacterial alternatives. MSNs could be manufactured through green synthetic methods as environmentally friendly and sustainable synthesis approaches, to improve physiochemical characteristics for biomedical applications. In the present research, we used Rutin (Ru) extract, a biocompatible flavonoid, as the reducing agent and nonsurfactant template for the green synthesis of Ag-decorated MSNs. Transmission electron microscopy (TEM), zeta-potential, x-ray powder diffraction (XRD), fourier transform infrared (FTIR) spectroscopy analysis, scanning electron microscopy (SEM), brunauer-emmett-teller (BET) analysis, and energy-dispersive system (EDS) spectroscopy were used to evaluate the Ag-decorated MSNs physical characteristics. The antimicrobial properties were evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and also different types of candida. The cytotoxicity test was performed by using the MTT assay. Based on the findings, the significant antimicrobial efficacy of Ru-Ag-decorated MSNs against both gram positive and gram negative bacteria and different types of fungi was detected as well as acceptable safety and low cytotoxicity even at lower concentrations. Our results have given a straightforward and cost-effective method for fabricating biodegradable Ag-decorated MSNs. The applications of these MSNs in the domains of biomedicine appear to be promising.
    Matched MeSH terms: Silicon Dioxide/chemistry
  2. Adam F, Muniandy L, Thankappan R
    J Colloid Interface Sci, 2013 Sep 15;406:209-16.
    PMID: 23800370 DOI: 10.1016/j.jcis.2013.05.066
    Titania and ceria incorporated rice husk silica based catalyst was synthesized via sol-gel method using CTAB and glycerol as surface directing agents at room temperature and labeled as RHS-50Ti10Ce. The catalyst was used to study the adsorption and photodegradation of methylene blue (MB) under UV irradiation. The powder XRD pattern of RHS-50Ti10Ce was much broader (2θ=25-30°) than that of the parent RHS (2θ=22°). The catalyst exhibited type IV isotherm with H3 hysteresis loop, and the TEM images showed partially ordered pore arrangements. The TGA-DTG thermograms confirmed the complete removal of the templates after calcination at 500°C. RHS-50Ti10Ce exhibited excellent adsorption capability with more than 99% removal of MB from a 40 mg L(-1) solution in just 15 min. It also decolorized an 80 mg L(-1) MB solution under UV irradiation in 210 min, which was comparable with the commercialized pure anatase TiO2.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  3. Adam F, Andas J
    J Colloid Interface Sci, 2007 Jul 1;311(1):135-43.
    PMID: 17391688
    Iron and 4-(methylamino)benzoic acid have been successfully incorporated into silica extracted from rice husk. The silica/Fe/amine complex, RH-Fe(5% amine), showed a ca. 24% increase in specific surface area compared to RH-Fe. This increase was attributed to the templated formation of regular pores. The XRD showed the RH-Fe(5% amine) to be amorphous. The Friedel-Crafts benzylation reaction with toluene using RH-Fe(5% amine) showed a drastic reduction in the di-substituted products to ca. 1.0%.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  4. Adam F, Kandasamy K, Balakrishnan S
    J Colloid Interface Sci, 2006 Dec 1;304(1):137-43.
    PMID: 16996077
    Silica supported iron catalyst was prepared from rice husk ash (RHA) via the sol-gel technique using an aqueous solution of iron(III) salt in 3.0 M HNO3. The sample was dried at 110 degrees C and labeled as RHA-Fe. A sample of RHA-Fe was calcined at 700 degrees C for 5 h and labeled as RHA-Fe700. X-ray diffraction spectrogram showed that both RHA-Fe and RHA-Fe700 were amorphous. The SEM/EDX results showed that the metal was present as agglomerates and the Fe ions were not homogeneously distributed in RHA-Fe but RHA-Fe700 was shown to be homogeneous. The specific surface areas for RHA-Fe and RHA-Fe700 were determined by BET nitrogen adsorption studies and found to be 87.4 and 55.8 m(2) g(-1), respectively. Both catalysts showed high activity in the reaction between toluene and benzyl chloride. The mono-substituted benzyltoluene was the major product and both catalysts yielded more than 92% of the product. The GC showed that both the ortho- and para-substituted monoisomers were present in about equal quantities. The minor products consisting of 16 di-substituted isomers were also observed in the GC-MS spectra of both catalytic products. The catalyst was found to be reusable without loss of activity and with no leaching of the metal.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  5. Adil M, Mohd Zaid H, Raza F, Agam MA
    PLoS One, 2020;15(7):e0236837.
    PMID: 32730369 DOI: 10.1371/journal.pone.0236837
    Recent developments propose renewed use of surface-modified nanoparticles (NPs) for enhanced oil recovery (EOR) due to improved stability and reduced porous media retention. The enhanced surface properties render the nanoparticles more suitable compared to bare nanoparticles, for increasing the displacement efficiency of waterflooding. However, the EOR mechanisms using NPs are still not well established. This work investigates the effect of in-situ surface-modified silica nanoparticles (SiO2 NPs) on interfacial tension (IFT) and wettability behavior as a prevailing oil recovery mechanism. For this purpose, the nanoparticles have been synthesized via a one-step sol-gel method using surface-modification agents, including Triton X-100 (non-ionic surfactant) and polyethylene glycol (polymer), and characterized using various techniques. These results exhibit the well-defined spherical particles, particularly in the presence of Triton X-100 (TX-100), with particle diameter between 13 to 27 nm. To this end, SiO2 nanofluids were formed by dispersing nanoparticles (0.05 wt.%, 0.075 wt.%, 0.1 wt.%, and 0.2 wt.%) in 3 wt.% NaCl to study the impact of surface functionalization on the stability of the nanoparticle suspension. The optimal stability conditions were obtained at 0.1 wt.% SiO2 NPs at a basic pH of 10 and 9.5 for TX-100/ SiO2 and PEG/SiO nanofluids, respectively. Finally, the surface-treated SiO2 nanoparticles were found to change the wettability of treated (oil-wet) surface into water-wet by altering the contact angle from 130° to 78° (in case of TX-100/SiO2) measured against glass surface representing carbonate reservoir rock. IFT results also reveal that the surfactant treatment greatly reduced the oil-water IFT by 30%, compared to other applied NPs. These experimental results suggest that the use of surface-modified SiO2 nanoparticles could facilitate the displacement efficiency by reducing IFT and altering the wettability of carbonate reservoir towards water-wet, which is attributed to more homogeneity and better dispersion of surface-treated silica NPs compared to bare-silica NPs.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  6. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Ebrahimiasl S, Dehzangi A
    Int J Mol Sci, 2012;13(4):4860-72.
    PMID: 22606014 DOI: 10.3390/ijms13044860
    Polyimide/SiO(2) composite films were prepared from tetraethoxysilane (TEOS) and poly(amic acid) (PAA) based on aromatic diamine (4-aminophenyl sulfone) (4-APS) and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride) (BTDA) via a sol-gel process in N-methyl-2-pyrrolidinone (NMP). The prepared polyimide/SiO(2) composite films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA) and the formation of SiO(2) particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO(2) particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO(2) composite films were investigated using TGA in N(2) atmosphere. The activation energy of the solid-state process was calculated using Flynn-Wall-Ozawa's method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  7. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WS
    Bioresour Technol, 2013 Sep;143:584-91.
    PMID: 23835263 DOI: 10.1016/j.biortech.2013.06.055
    Bioregeneration of mono-amine modified silica gel (MAMS) adsorbent loaded with Acid Orange 7 (AO7), Acid Yellow 9 (AY9) and Acid Red 14 (AR14), respectively, was investigated under two different operational conditions, namely absence/presence of sucrose/bacto-peptone as the co-substrate and different biomass acclimation concentrations. The results revealed that the AY9- and AR14-loaded MAMS adsorbents could almost be completely bioregenerated but only in the presence of co-substrate whereas the bioregeneration of AO7-loaded MAMS could achieve up to 71% in the absence of the co-substrate. These differences could be related to the structural properties of the investigated azo dyes. In addition, the results showed that the bioregeneration duration of AO7-loaded MAMS could be progressively shortened by using biomass acclimated to increasingly higher AO7 concentration. However, the bioregeneration efficiencies were found to be relatively unchanged under different biomass acclimation concentrations.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  8. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Bioresour Technol, 2012 Aug;118:633-7.
    PMID: 22704829 DOI: 10.1016/j.biortech.2012.05.090
    The objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  9. Alahmadi S, Mohamad S, Maah MJ
    Molecules, 2014 Apr 10;19(4):4524-47.
    PMID: 24727422 DOI: 10.3390/molecules19044524
    The adsorption of tributyltin (TBT), onto three mesoporous silica adsorbents functionalized with calix[4]arene, p-tert-butylcalix[4]arene and p-sulfonatocalix[4]arene (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively) has been compared. Batch adsorption experiments were carried out and the effect of contact time, initial TBT concentration, pH and temperature were studied. The Koble-Corrigan isotherm was the most suitable for data fitting. Based on a Langmuir isotherm model, the maximum adsorption capacities were 12.1212, 16.4204 and 7.5757 mg/g for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively. The larger uptake and stronger affinity of MCM-TDI-PC4 than MCM-TDI-C4 and MCM-TDI-C4S probably results from van der Waals interactions and the pore size distribution of MCM-TDI-PC4. Gibbs free energies for the three adsorption processes of TBT presented a negative value, reflecting that TBT/surface interactions are thermodynamic favorable and spontaneous. The interaction processes were accompanied by an increase of entropy value for MCM-TDI-C4 and MCM-TDI-C4S (43.7192 and 120.7609 J/mol K, respectively) and a decrease for MCM-TDI-PC4 (-37.4704 J/mol K). It is obviously observed that MCM-TDI-PC4 spontaneously adsorbs TBT driven mainly by enthalpy change, while MCM-TDI-C4 and MCM-TDI-C4S do so driven mainly by entropy changes.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  10. Alahmadi SM, Mohamad S, Maah MJ
    Int J Mol Sci, 2012;13(10):13726-36.
    PMID: 23202977 DOI: 10.3390/ijms131013726
    This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  11. Alawiah A, Bauk S, Marashdeh MW, Nazura MZ, Abdul-Rashid HA, Yusoff Z, et al.
    Appl Radiat Isot, 2015 Oct;104:197-202.
    PMID: 26188687 DOI: 10.1016/j.apradiso.2015.07.011
    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  12. Alawjali SS, Lui JL
    J Dent, 2013 Aug;41 Suppl 3:e53-61.
    PMID: 23103847 DOI: 10.1016/j.jdent.2012.10.008
    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system.
    Matched MeSH terms: Silicon Dioxide/chemistry
  13. Amin NA, Akhtar J, Rai HK
    Water Sci Technol, 2011;63(8):1651-6.
    PMID: 21866764
    The performances of HZSM-5 and transition metal-loaded HZSM-5 (Mn, Cu, Fe, Ti) catalysts during catalytic ozonation of phenol have been investigated. It was observed the performance order for removal of phenol and COD was Mn/HZSM-5 > Fe/HZSM-5 > Cu/HZSM-5 > Ti/HZSM-5 > HZSM-5. The presence of metals on HZSM-5 enhanced the phenol removal capability of HZSM-5. Mn loading on HZSM-5 was optimized due to its high phenol removal capability amongst metal-loaded HZSM-5 catalysts. Experimental results suggested that low amount of Mn loading on HZSM-5 was sufficient for HZSM-5 to act as catalyst and adsorbent. A maximum of 95.8 wt% phenols and 70.2 wt% COD were removed over 2 wt% Mn/HZSM-5 in 120 min. It was supposed that transition metals mainly acted as ozone decomposers due to their multiple oxidation states that enhanced the ozonation of phenol.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  14. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  15. Ashraf MA, Peng WX, Fakhri A, Hosseini M, Kamyab H, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111579.
    PMID: 31401316 DOI: 10.1016/j.jphotobiol.2019.111579
    The sol-gel/ultrasonically rout produced the novel MnS2-SiO2 nano-hetero-photocatalysts with the various ratio of MnS2. Prepared nano-catalyst were investigated in the photo-degradation of methylene blue under UV light illumination. Structural and optical attributes of as-prepared nano-catalysts were evaluated by X-ray diffraction and photoelectron spectroscopy. The morphological were studied by scanning electron microscopy-EDS, and dynamic light scattering. The diffuse reflectance spectroscopy was applied to examine the band gap energy. The Eg values of SiO2, MnS2-SiO2-0, MnS2-SiO2-1, and MnS2-SiO2-2 nanocomposites are 6.51, 3.85, 3.17, and 2.67 eV, respectively. The particle size of the SiO2 and MnS2-SiO2-1 nanocomposites were 100.0, and 65.0 nm, respectively. The crystallite size values of MnS2-SiO2-1 were 52.21 nm, and 2.9 eV, respectively. MnS2-SiO2 nano-photocatalyst was recognized as the optimum sample by degrading 96.1% of methylene blue from water. Moreover, the influence of pH of the solution, and contact time as decisive factors on the photo-degradation activity were investigated in this project. The optimum data for pH and time were found 9 and 60 min, respectively. The photo-degradation capacity of MnS2-SiO2-2 is improved (96.1%) due to the low band gap was found from UV-vis DRS. The antimicrobial data of MnS2-SiO2 were studied and demonstrated that the MnS2-SiO2 has fungicidal and bactericidal attributes.
    Matched MeSH terms: Silicon Dioxide/chemistry*
  16. Azadi S, Azizipour E, Amani AM, Vaez A, Zareshahrabadi Z, Abbaspour A, et al.
    Sci Rep, 2024 Mar 11;14(1):5855.
    PMID: 38467729 DOI: 10.1038/s41598-024-56512-5
    The antifungal efficacy and cytotoxicity of a novel nano-antifungal agent, the Fe3O4@SiO2/Schiff-base complex of Cu(II) magnetic nanoparticles (MNPs), have been assessed for targeting drug-resistant Candida species. Due to the rising issue of fungal infections, especially candidiasis, and resistance to traditional antifungals, there is an urgent need for new therapeutic strategies. Utilizing Schiff-base ligands known for their broad-spectrum antimicrobial activity, the Fe3O4@SiO2/Schiff-base/Cu(II) MNPs have been synthesized. The Fe3O4@SiO2/Schiff-base/Cu(II) MNPs was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Energy-dispersive X-ray (EDX), Vibrating Sample Magnetometer (VSM), and Thermogravimetric analysis (TGA), demonstrating successful synthesis. The antifungal potential was evaluated against six Candida species (C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata, and C. albicans) using the broth microdilution method. The results indicated strong antifungal activity in the range of 8-64 μg/mL with the lowest MIC (8 μg/mL) observed against C. parapsilosis. The result showed the MIC of 32 μg/mL against C. albicans as the most common infection source. The antifungal mechanism is likely due to the disruption of the fungal cell wall and membrane, along with increased reactive oxygen species (ROS) generation leading to cell death. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay for cytotoxicity on mouse L929 fibroblastic cells suggested low toxicity and even enhanced cell proliferation at certain concentrations. This study demonstrates the promise of Fe3O4@SiO2/Schiff-base/Cu(II) MNPs as a potent antifungal agent with potential applications in the treatment of life-threatening fungal infections, healthcare-associated infections, and beyond.
    Matched MeSH terms: Silicon Dioxide/chemistry
  17. Aziz T, Farid A, Haq F, Kiran M, Ullah N, Faisal S, et al.
    Environ Res, 2023 Apr 01;222:115253.
    PMID: 36702191 DOI: 10.1016/j.envres.2023.115253
    Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.
    Matched MeSH terms: Silicon Dioxide/chemistry
  18. Azizah N, Hashim U, Gopinath SCB, Nadzirah S
    Int J Biol Macromol, 2017 Jan;94(Pt A):571-575.
    PMID: 27771413 DOI: 10.1016/j.ijbiomac.2016.10.060
    Nanoparticles have been investigated as flagging tests for the sensitive DNA recognition that can be utilized as a part of field applications to defeat restrictions. Gold nanoparticles (AuNPs) have been widely utilized due to its optical property and capacity to get functionalized with a mixed bag of biomolecules. This study exhibits the utilization of AuNPs functionalized with single-stranded oligonucleotide (AuNP-oligo test) for fast the identification of Human Papillomavirus (HPV). This test is displayed on interdigitated electrode sensor and supported by colorimetric assay. DNA conjugated AuNP has optical property that can be controlled for the applications in diagnostics. With its identification abilities, this methodology incorporates minimal effort, strong reagents and basic identification of HPV.
    Matched MeSH terms: Silicon Dioxide/chemistry
  19. Bahadoran M, Noorden AF, Chaudhary K, Mohajer FS, Aziz MS, Hashim S, et al.
    Sensors (Basel), 2014;14(7):12885-99.
    PMID: 25046015 DOI: 10.3390/s140712885
    A new photonics biosensor configuration comprising a Double-side Ring Add-drop Filter microring resonator (DR-ADF) made from SiO2-TiO2 material is proposed for the detection of Salmonella bacteria (SB) in blood. The scattering matrix method using inductive calculation is used to determine the output signal's intensities in the blood with and without presence of Salmonella. The change in refractive index due to the reaction of Salmonella bacteria with its applied antibody on the flagellin layer loaded on the sensing and detecting microresonator causes the increase in through and dropper port's intensities of the output signal which leads to the detection of SB in blood. A shift in the output signal wavelength is observed with resolution of 0.01 nm. The change in intensity and shift in wavelength is analyzed with respect to the change in the refractive index which contributes toward achieving an ultra-high sensitivity of 95,500 nm/RIU which is almost two orders higher than that of reported from single ring sensors and the limit of detection is in the order of 1 × 10(-8) RIU. In applications, such a system can be employed for a high sensitive and fast detection of bacteria.
    Matched MeSH terms: Silicon Dioxide/chemistry
  20. Bahadoran M, Noorden AF, Mohajer FS, Abd Mubin MH, Chaudhary K, Jalil MA, et al.
    Artif Cells Nanomed Biotechnol, 2016;44(1):315-21.
    PMID: 25133457 DOI: 10.3109/21691401.2014.948549
    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
    Matched MeSH terms: Silicon Dioxide/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links