Displaying publications 1 - 20 of 290 in total

Abstract:
Sort:
  1. Faizah M, Kanaheswari Y, Thambidorai C, Zulfiqar M
    Biomed Imaging Interv J, 2011 Jan-Mar;7(1):e7.
    PMID: 21655116 MyJurnal DOI: 10.2349/biij.7.1.e7
    To compare echocontrast cystosonography (ECS) using in-vivo agitated saline with fluoroscopic micturating cystourethrography (MCU) in the detection and grading of vesicoureteric reflux (VUR).
    Matched MeSH terms: Sodium Chloride
  2. Butt M, Sattar A, Abbas T, Hussain R, Ijaz M, Sher A, et al.
    PLoS One, 2021;16(11):e0257893.
    PMID: 34735478 DOI: 10.1371/journal.pone.0257893
    Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m-1 on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
    Matched MeSH terms: Sodium Chloride/adverse effects
  3. Campbell NRC, Whelton PK, Orias M, Wainford RD, Cappuccio FP, Ide N, et al.
    J Hum Hypertens, 2023 Jun;37(6):428-437.
    PMID: 35581323 DOI: 10.1038/s41371-022-00690-0
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary/adverse effects
  4. Xu D, Gao Y, Lin Z, Gao W, Zhang H, Karnowo K, et al.
    Front Chem, 2019;7:943.
    PMID: 32117859 DOI: 10.3389/fchem.2019.00943
    In this study, biochars derived from waste fiberboard biomass were applied in tetracycline (TC) removal in aqueous solution. Biochar samples were prepared by slow pyrolysis at 300, 500, and 800°C, and were characterized by ultimate analysis, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), etc. The effects of ionic strength (0-1.0 mol/L of NaCl), initial TC concentration (2.5-60 ppm), biochar dosage (1.5-2.5 g/L), and initial pH (2-10) were systemically determined. The results present that biochar prepared at 800°C (BC800) generally possesses the highest aromatization degree and surface area with abundant pyridinic N (N-6) and accordingly shows a better removal efficiency (68.6%) than the other two biochar samples. Adsorption isotherm data were better fitted by the Freundlich model (R2 is 0.94) than the Langmuir model (R2 is 0.85). Thermodynamic study showed that the adsorption process is endothermic and mainly physical in nature with the values of ΔH0 being 48.0 kJ/mol, ΔS0 being 157.1 J/mol/K, and ΔG0 varying from 1.02 to -2.14 kJ/mol. The graphite-like structure in biochar enables the π-π interactions with a ring structure in the TC molecule, which, together with the N-6 acting as electron donor, is the main driving force of the adsorption process.
    Matched MeSH terms: Sodium Chloride
  5. Zakri, A.H.
    ASM Science Journal, 2009;3(2):200-202.
    MyJurnal
    Recent studies by the United Nations University - Institute of Advanced Studies (UNU-IAS) demonstrate that bioprospecting is taking place in Antarctica and the Southern Ocean and that related commercial applications were being marketed. The bioprospectors’ interest in Antarctica stems from two reasons. First, the lack of knowledge surrounding Antarctic biota provides opportunities to discover novel organisms of potential use to biotechnology. Second, Antarctica’s environmental extremes, such as cold temperatures, extreme aridity and salinity present conditions in which biota have evolved unique characteristics for survival (UNU-IAS 2003). Thus bioprospecting opportunities include, inter alia, the discovery of novel bioactives in species found in cold and dry lithic habitat, novel pigments found in hyper-saline lakes and antifreezes in sea-lakes (Cheng & Cheng 1999).
    Matched MeSH terms: Sodium Chloride
  6. Normah Ismail, Najihah Shukor, Zainal Samicho
    MyJurnal
    Silver catfish (Pangasius sutchi) skin gelatin was extracted to determine the effects of extraction time on the functional properties of the gelatin in terms of solubility, protein solubility as a function of pH and sodium chloride concentration, emulsifying capacity and stability, water holding capacity, fat binding capacities and foaming properties. Silver catfish skins were washed in sodium chloride (NaCl) solution prior to pre-treatment in sodium hydroxide (NaOH) and acetic acid solution. Gelatin was extracted at 50ºC for 6, 8, 10 and 12 hours extraction time followed by freeze drying. The extraction of silver catfish skin gelatin at 50 ºC for 12 hours was more effective than extraction at 6, 8 and 10 hours where the gelatin was characterized by higher emulsifying capacity (52.63%), emulsifying stability (47.83%), water holding capacity (31.78 mL/g), fat binding capacities (54.76%), foaming capacity (41.47 mL) and foaming stability (56.42%) than gelatins extracted at other extraction time. The longer the extraction time, the better the functional properties of the gelatin. Based on its good functional properties, silver catfish skin gelatin may be useful in various food applications such as soups, sauces and gravies.
    Matched MeSH terms: Sodium Chloride
  7. Mohd Nazri Idris, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Sodium silicate was used to synthesize silica fine particles at room temperature using non-ionic surfactant of triethanolamine (TEA), dissolution salt and precipitating agent. The experiments were conducted by different composition of precursor material, nonionic surfactant and dissolution salt concentrations through the sol-gel process. Various particle sizes in the range 100-300nm were synthesized. The particle size of silica powders were analyzed via Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Analysis (EDAX), X-Ray Fluorescence (XRF), and Fourier Transformation Infrared (FTIR). The result has demonstrated that the particle size can be controlled by changing the ratio of non-ionic surfactant and dissolution salt or the sodium silicate concentration.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  8. NUR SURIANNI AHAMAD SUFFIN, ANASYIDA ABU SEMAN, ZUHAILAWATI HUSSAIN
    Sains Malaysiana, 2013;42:1755-1761.
    Aluminum foams were fabricated by sintering dissolution process (SDP) using sodium chloride (NaCl) as space holder. The compositions of space holder, used in this study were 40 and 60 wt. % with different dissolution times; 1, 2 and 3 h. The effect of different dissolution times on compressive behavior and energy absorption of foams were evaluated. The result showed that by increasing space holder and dissolution times, energy absorption capability increases. For aluminum foam contains 60 wt. % NaCl, longer dissolution times resulted in thinner cell wall and cell structure become more unstable which lead to lower plateau region.
    Matched MeSH terms: Sodium Chloride
  9. Zulkeflee Z, Aris AZ, Shamsuddin ZH, Yusoff MK
    ScientificWorldJournal, 2012;2012:495659.
    PMID: 22997497
    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
    Matched MeSH terms: Sodium Chloride/chemistry
  10. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    Chemosphere, 2019 Feb;217:213-222.
    PMID: 30415119 DOI: 10.1016/j.chemosphere.2018.11.015
    Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media. CNPs and GOQDs (30 mg/L) were dispersed in natural river water (RW) and passed through the column at a flow rate of 1 mL/min, which mimicking the natural water flow rate. After every 10 min, the column effluents were collected and the mass recovery and retention profiles were monitored. Results indicated that the transport of both carbonaceous colloids was predominantly controlled by surface potential and ionic composition of natural water. The CNPs with its high surface potential (-40 mV) exhibited more column transport and was less susceptible to solution pH (5.6-6.8) variation as compared to GOQDs (-24 mV). The results showed that, monovalent salt (NaCl) was one of the dominating factors for the retention and transport of carbonaceous colloids compared to divalent salt (CaCl2). Furthermore, the presence of natural organic matter (NOM) increased the transport of both carbonaceous colloids and thereby decreases the tendency for column retention.
    Matched MeSH terms: Sodium Chloride/analysis
  11. Khong TK, Selvanayagam V, Yusof A
    Eur J Sport Sci, 2021 Feb;21(2):224-230.
    PMID: 32056510 DOI: 10.1080/17461391.2020.1730980
    Carbohydrate (CHO) mouth rinse has been shown to improve endurance performance and maintain the central drive of contracting muscles. Salt (NaCl) mouth rinse solution, often used in dentistry to desensitise the oral cavity to pain, could also activate cortical areas of the brain. Hence, the objective of this preliminary study was to investigate whether CHO (glucose) and NaCl mouth rinses could attenuate the reduction in maximum voluntary contraction (MVC) and sustained MVC (sMVC) following an endurance exercise (30-minute cycling at 70% VO2max). Ten subjects (male, age: 22 ± 1 years, weight: 65.3 ± 12.4 kg, height: 164.5 ± 7.5 cm, VO2max: 48.3 ± 6.1 mL kg-1 min-1) completed three trials of 30-minute cycling exercise. In a randomised cross-over study, in each trial, the participants rinsed using either water, 6% glucose, or 6% NaCl solution for 5 s immediately prior to and every 10 min during the cycling exercise. The MVC and sMVC were measured pre and post cycling. Analysis of variance showed significant interaction and time effects for MVC, while for sMVC there was a significant interaction with time and group effects. Both MVC and sMVC were higher post cycling in the glucose and NaCl groups compared to the water group, which suggests that activation of glucose and NaCl oral receptors could better preserve post-exercise force production. This is the first study to show that NaCl mouth rinse can produce a comparable effect on glucose. Hence, mouth rinses may be able to activate other distinct pathways that could attenuate fatigue.
    Matched MeSH terms: Sodium Chloride/administration & dosage*
  12. Golestanbagh M, Ahamad IS, Idris A, Yunus R
    J Water Health, 2011 Sep;9(3):597-602.
    PMID: 21976206 DOI: 10.2166/wh.2011.035
    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.
    Matched MeSH terms: Sodium Chloride
  13. Norshazila, S., Othman, R., Jaswir, I., Yumi Zuhanis, H.H.
    MyJurnal
    In nature, environmental factors highly influence the carotenoid composition in pumpkin plants and these factors were difficult to control; thus, carotenoid content is varied quantitatively and qualitatively. However, certain parameters can be controlled and this can be conducted in the laboratory through biogenesis manipulation. This approach uses environmental stress as a tool to alter the carotenoid pathway in the plants. The main objective of this study was to observe the inhibiting and enhancing effect of abiotic stress on individual carotenoid accumulation in pumpkin plants under light and dark conditions. The abiotic stresses used were plant elicitors which consisted of Ultra Violet light exposure, Polyethylene Glycol 4000, Salicylic Acid, and half strength nutrients using Murashige and Skoog Salt. After two weeks of treatments, the pumpkin leaves and stems were harvested, freeze dried and extracted to determine the carotenoids compound using High-Performance Liquid Chromatography (HPLC). Results showed that there was a significant difference (p
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
  14. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Acharya RU, Yeong CH
    World journal of experimental medicine, 2020 Mar 30;10(2):10-25.
    PMID: 32266125 DOI: 10.5493/wjem.v10.i2.10
    BACKGROUND: Liver cancer is the 6th most common cancer in the world and the 4th most common death from cancer worldwide. Hepatic radioembolization is a minimally invasive treatment involving intraarterial administration of radioembolic microspheres.

    AIM: To develop a neutron-activated, biodegradable and theranostics samarium-153 acetylacetonate (153SmAcAc)-poly-L-lactic acid (PLLA) microsphere for intraarterial radioembolization of hepatic tumors.

    METHODS: Microspheres with different concentrations of 152SmAcAc (i.e., 100%, 150%, 175% and 200% w/w) were prepared by solvent evaporation method. The microspheres were then activated using a nuclear reactor in a neutron flux of 2 × 1012 n/cm2/s1, converting 152Sm to Samarium-153 (153Sm) via152Sm (n, γ) 153Sm reaction. The SmAcAc-PLLA microspheres before and after neutron activation were characterized using scanning electron microscope, energy dispersive X-ray spectroscopy, particle size analysis, Fourier transform infrared spectroscopy, thermo-gravimetric analysis and gamma spectroscopy. The in-vitro radiolabeling efficiency was also tested in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    RESULTS: The SmAcAc-PLLA microspheres with different SmAcAc contents remained spherical before and after neutron activation. The mean diameter of the microspheres was about 35 µm. Specific activity achieved for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc after 3 h neutron activation were 1.7 ± 0.05, 2.5 ± 0.05, 2.7 ± 0.07, and 2.8 ± 0.09 GBq/g, respectively. The activity of per microspheres were determined as 48.36 ± 1.33, 74.10 ± 1.65, 97.87 ± 2.48, and 109.83 ± 3.71 Bq for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc. The energy dispersive X-ray and gamma spectrometry showed that no elemental and radioactive impurities present in the microspheres after neutron activation. Retention efficiency of 153Sm in the SmAcAc-PLLA microspheres was excellent (approximately 99%) in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    CONCLUSION: The 153SmAcAc-PLLA microsphere is potentially useful for hepatic radioembolization due to their biodegradability, favorable physicochemical characteristics and excellent radiolabeling efficiency. The synthesis of the formulation does not involve ionizing radiation and hence reducing the complication and cost of production.

    Matched MeSH terms: Sodium Chloride
  15. Taha AM, Zainab T, Lau D, Yeo P
    Med J Malaysia, 1995 Dec;50(4):391-5.
    PMID: 8668062
    Three hundred and forty five salt samples were randomly taken from 106 sources where iodised salts were supplied or put for sale in all areas gazetted as endemic goitre areas in Sarawak. The samples were analysed for the presence of iodine. In areas in Sibu, Sarikei and Kapit Divisions, 53-70% of salt put for sale were iodised while in the other 6 Divisions, it was less than 27%. As iodisation of salt is an interventive measure in addressing the goitre problem in the State, regular monitoring of iodisation facilities and iodine content of iodised salt in the affected areas is important to ensure the effectiveness of the programme.
    Matched MeSH terms: Sodium Chloride, Dietary/administration & dosage*
  16. Mehrnoush A, Mustafa S, Yazid AM
    Molecules, 2011 Dec 08;16(12):10202-13.
    PMID: 22158589 DOI: 10.3390/molecules161210202
    A 'Heat treatment aqueous two phase system' was employed for the first time to purify serine protease from kesinai (Streblus asper) leaves. In this study, introduction of heat treatment procedure in serine protease purification was investigated. In addition, the effects of different molecular weights of polyethylene glycol (PEG 4000, 6000 and 8000) at concentrations of 8, 16 and 21% (w/w) as well as salts (Na-citrate, MgSO₄ and K₂HPO₄) at concentrations of 12, 15, 18% (w/w) on serine protease partition behavior were studied. Optimum conditions for serine protease purification were achieved in the PEG-rich phase with composition of 16% PEG6000-15% MgSO₄. Also, thermal treatment of kesinai leaves at 55 °C for 15 min resulted in higher purity and recovery yield compared to the non-heat treatment sample. Furthermore, this study investigated the effects of various concentrations of NaCl addition (2, 4, 6 and 8% w/w) and different pH (4, 7 and 9) on the optimization of the system to obtain high yields of the enzyme. The recovery of serine protease was significantly enhanced in the presence of 4% (w/w) of NaCl at pH 7.0. Based on this system, the purification factor was increased 14.4 fold and achieved a high yield of 96.7%.
    Matched MeSH terms: Sodium Chloride/chemistry
  17. Lioe HN, Selamat J, Yasuda M
    J Food Sci, 2010 Apr;75(3):R71-6.
    PMID: 20492309 DOI: 10.1111/j.1750-3841.2010.01529.x
    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.
    Matched MeSH terms: Sodium Chloride, Dietary/analysis
  18. Chen PC, Yap SB
    Med J Malaysia, 1988 Jun;43(2):159-61.
    PMID: 3266288
    Matched MeSH terms: Sodium Chloride
  19. Siti F. Masre, Muzamir, M.K, Sabarina, I., Jehan, N., Yanti Rosli
    Jurnal Sains Kesihatan Malaysia, 2018;16(101):41-45.
    MyJurnal
    This study was conducted to evaluate the effect of argan oil with the exposure of low frequency electromagnetic field (EMF) on open wound healing in mice. Eighteen male mice (20-40 g) were divided into three groups: phosphate buffer saline (PBS) as negative control, solcoseryl gel as positive control, and argan oil with the exposure of low frequency EMF, 1.2 mT (treatment group). Full thickness wounds (4 mm diameter) were induced on the shaved dorsal of the mouse. All mice were sacrificed on day 12 after the final treatment. Macroscopic observation, wound contraction rate, histopathology analysis and total protein content were examined in this study. Results showed that wounds treated with argan oil and exposed to low frequency EMF has a significant increase in wound contraction rate (p < 0.05) and total protein content (p < 0.05). Moreover, histopathological analysis on the wound tissues displayed complete re-epithelization with thick and dense collagen fibers in the argan oil with low frequency EMF exposure treated group. In conclusion, topical treatment of argan oil with low frequency EMF exposure yield a better healing progress and showed the ability to accelerate wound healing
    Matched MeSH terms: Sodium Chloride
  20. Luo D, Li P, Yue Y, Ma J, Yang H
    Sensors (Basel), 2017 May 04;17(5).
    PMID: 28471372 DOI: 10.3390/s17050962
    The protection of concrete structures against corrosion in marine environments has always been a challenge due to the presence of a saline solution-A natural corrosive agent to the concrete paste and steel reinforcements. The concentration of salt is a key parameter influencing the rate of corrosion. In this paper, we propose an optical fiber-based salinity sensor based on bundled multimode plastic optical fiber (POF) as a sensor probe and a concave mirror as a reflector in conjunction with an intensity modulation technique. A refractive index (RI) sensing approach is analytically investigated and the findings are in agreement with the experimental results. A maximum sensitivity of 14,847.486/RIU can be achieved at RI = 1.3525. The proposed technique is suitable for in situ measurement and monitoring of salinity in liquid.
    Matched MeSH terms: Sodium Chloride; Sodium Chloride, Dietary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links