Displaying publications 1 - 20 of 766 in total

Abstract:
Sort:
  1. AL-Bayaty, F.H., Omar Emad Ibrahim, William, C., Khairuddin, N.A.
    Compendium of Oral Science, 2018;5(1):26-36.
    MyJurnal
    Objective: This retrospective study aims to evaluate the possible effects of antihypertensive drugs on alveolar bone loss in patients with chronic periodontitis. Methods: 50 patients on antihypertensive drugs selected as the experimental group and 50 patients with chronic periodontitis with no known systemic illnesses as control group were randomly selected as the study samples. Orthopantomographs were obtained, calibration and assessment of alveolar bone loss was performed by using the computer software program available in the faculty, through radiographic linear measurement procedure. Premolars, first and second molars of both maxilla and mandible were measured from the most apical point to the cementoenamel junction for mesial and distal aspects in the form of millimetres and percentile of the root length. Data was statistically analyzed using independent t-test and Analysis of Covariance in SPSS Version 23 with significance at P-value, p
    Matched MeSH terms: Software
  2. ALIATULNAJIHA AYUB, MOHD ASAMUDIN A RAHMAN
    MyJurnal
    A numerical study is conducted to determine the Vortex Induced Motion (VIM) effects on Deep-Draft Semi-Submersibles (DDSS). The VIM phenomena is a crucial problem that can cause severe impact on the fatigue life of mooring risers in DDSS. Therefore, a comprehensive numerical simulation is conducted using the Acusolve computational fluid dynamics (CFD) software. Five models of immersed columns with different aspect ratios (ie. 0.6, 0.8, 1.0, 1.2 and 1.4) are numerically investigated under two different incidence angles, which are 0° and 45°. The transverse and in-line vibration amplitude, amplitude of lift force coefficient and vortex shedding are analyzed. The numerical measurements are obtained to see the response of horizontal plane motions, which are transverse, in line and yaw motions. This study with detailed numerical results from parametric data will contribute future studies and the comparisons are made to demonstrate the capability of the present CFD approach.
    Matched MeSH terms: Software
  3. ASSUNTA MALAR PATRICK VINCENT, HASSILAH SALLEH
    MyJurnal
    A wide range of studies have been conducted on deep learning to forecast time series data. However, very few researches have discussed the optimal number of hidden layers and nodes in each hidden layer of the architecture. It is crucial to study the number of hidden layers and nodes in each hidden layer as it controls the performance of the architecture. Apart from that, in the presence of the activation function, diverse computation between the hidden layers and output layer can take place. Therefore, in this study, the multilayer perceptron (MLP) architecture is developed using the Python software to forecast time series data. Then, the developed architecture is applied on the Apple Inc. stock price due to its volatile characteristic. Using historical prices, the accuracy of the forecast is measured by the different activation functions, number of hidden layers and size of data. The Keras deep learning library, which can be found in the Python software, is used to develop the MLP architecture to forecast the Apple Inc. stock price. The developed model is then applied on different cases, namely different sizes of data, different activation functions, different numbers of hidden layers of up to nine layers, and different numbers of nodes in each hidden layer. Then, the metrics mean squared error (MSE), mean absolute error (MAE) and root-mean-square error (RMSE) are employed to test the accuracy of the forecast. It is found that the architecture with rectified linear unit (ReLU) outperformed in every hidden layer and each case with the highest accuracy. To conclude, the optimal number of hidden layers differs in every case as there are other influencing factors.
    Matched MeSH terms: Software
  4. Aalsalem MY, Khan WZ, Saad NM, Hossain MS, Atiquzzaman M, Khan MK
    PLoS One, 2016;11(7):e0158072.
    PMID: 27409082 DOI: 10.1371/journal.pone.0158072
    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
    Matched MeSH terms: Software
  5. Ab Ghani NS, Ramlan EI, Firdaus-Raih M
    Nucleic Acids Res, 2019 07 02;47(W1):W350-W356.
    PMID: 31106379 DOI: 10.1093/nar/gkz391
    A common drug repositioning strategy is the re-application of an existing drug to address alternative targets. A crucial aspect to enable such repurposing is that the drug's binding site on the original target is similar to that on the alternative target. Based on the assumption that proteins with similar binding sites may bind to similar drugs, the 3D substructure similarity data can be used to identify similar sites in other proteins that are not known targets. The Drug ReposER (DRug REPOSitioning Exploration Resource) web server is designed to identify potential targets for drug repurposing based on sub-structural similarity to the binding interfaces of known drug binding sites. The application has pre-computed amino acid arrangements from protein structures in the Protein Data Bank that are similar to the 3D arrangements of known drug binding sites thus allowing users to explore them as alternative targets. Users can annotate new structures for sites that are similarly arranged to the residues found in known drug binding interfaces. The search results are presented as mappings of matched sidechain superpositions. The results of the searches can be visualized using an integrated NGL viewer. The Drug ReposER server has no access restrictions and is available at http://mfrlab.org/drugreposer/.
    Matched MeSH terms: Software*
  6. Abas A, Mokhtar NH, Ishak MH, Abdullah MZ, Ho Tian A
    Comput Math Methods Med, 2016;2016:6143126.
    PMID: 27239221 DOI: 10.1155/2016/6143126
    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
    Matched MeSH terms: Software
  7. Abbavannagari Bharath Kumar, Marakanam Srinivasan Umashankar, Sandeep Podda
    MyJurnal
    Introduction: Diabetes is a chronic metabolic disease and noted to be incidence is intensifying globally and contem- plated as epidemic. The study is aimed to assess the coronary artery disease risk profile associated diabetes mellitus patient and to identify the clinical pharmacist care services in the management and to control the risk burden in the clinical practice. Method: A prospective observational study was conducted among the consecutive patients of coronary artery disease associated diabetic patients in a tertiary care teaching hospital over 6 months period. A sam- ple of 150 patients was recruited in the study. Data analysis was done with graph pad prism software 5.01. Results: The present study revealed that coronary artery disease in diabetes was more prevalent in age group between 41-50 years. About 54.66% patients with hyperlipidemia were at risk to develop the coronary artery disease complication. Glycated hemoglobin test was detected in 40% of the patient showing abnormal levels and around 43.33% of patient had an abnormal fasting blood sugar level. The study showed only 32% of patients was prescribed Insulin & oral hy- poglycemic agents and 13 % were treated with statins. Conclusion: It could be concluded that the causative factors should be controlled and treated with an early need for amalgamation of clinical pharmacist care services with the health care team on life style modification counseling could ultimately improve the patient health outcomes and also lowers progression of coronary artery disease risk complications among diabetic patients.
    Matched MeSH terms: Software
  8. Abd Algfoor Z, Shahrizal Sunar M, Abdullah A, Kolivand H
    Brief Funct Genomics, 2017 03 01;16(2):87-98.
    PMID: 26969656 DOI: 10.1093/bfgp/elw002
    Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches.
    Matched MeSH terms: Software
  9. Abd Rahman FA, Ab Kadir MZA, Ungku Amirulddin UA, Osman M
    Materials (Basel), 2021 Mar 29;14(7).
    PMID: 33805583 DOI: 10.3390/ma14071684
    The fourth rail transit is an interesting topic to be shared and accessed by the community within that area of expertise. Several ongoing works are currently being conducted especially in the aspects of system technical performances including the rail bracket component and the sensitivity analyses on the various rail designs. Furthermore, the lightning surge study on railway electrification is significant due to the fact that only a handful of publications are available in this regard, especially on the fourth rail transit. For this reason, this paper presents a study on the electrical performance of a fourth rail Direct Current (DC) urban transit affected by an indirect lightning strike. The indirect lightning strike was modelled by means of the Rusck model and the sum of two Heidler functions. The simulations were carried out using the EMTP-RV software which included the performance comparison of polymer-insulated rail brackets, namely the Cast Epoxy (CE), the Cycloaliphatic Epoxy A (CEA), and the Glass Reinforced Plastic (GRP) together with the station arresters when subjected by 30 kA (5/80 µs) and 90 kA (9/200 µs) lightning currents. The results obtained demonstrated that the GRP material has been able to slightly lower its induced overvoltage as compared to other materials, especially for the case of 90 kA (9/200 µs), and thus serves better coordination with the station arresters. This improvement has also reflected on the recorded residual voltage and energy absorption capacity of the arrester, respectively.
    Matched MeSH terms: Software
  10. Abdelaziz A, Fong AT, Gani A, Garba U, Khan S, Akhunzada A, et al.
    PLoS One, 2017;12(4):e0174715.
    PMID: 28384312 DOI: 10.1371/journal.pone.0174715
    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.
    Matched MeSH terms: Software*
  11. Abdelhaq M, Alsaqour R, Abdelhaq S
    PLoS One, 2015;10(5):e0120715.
    PMID: 25946001 DOI: 10.1371/journal.pone.0120715
    A mobile ad hoc network (MANET) is a set of mobile, decentralized, and self-organizing nodes that are used in special cases, such as in the military. MANET properties render the environment of this network vulnerable to different types of attacks, including black hole, wormhole and flooding-based attacks. Flooding-based attacks are one of the most dangerous attacks that aim to consume all network resources and thus paralyze the functionality of the whole network. Therefore, the objective of this paper is to investigate the capability of a danger theory-based artificial immune algorithm called the mobile dendritic cell algorithm (MDCA) to detect flooding-based attacks in MANETs. The MDCA applies the dendritic cell algorithm (DCA) to secure the MANET with additional improvements. The MDCA is tested and validated using Qualnet v7.1 simulation tool. This work also introduces a new simulation module for a flooding attack called the resource consumption attack (RCA) using Qualnet v7.1. The results highlight the high efficiency of the MDCA in detecting RCAs in MANETs.
    Matched MeSH terms: Software
  12. Abdul Adib A, Agnis S
    Expectations and satisfactions are two different yet interrelated area. Hence, the main purpose of this study is to investigate the influence of working parent expectation on parenting satisfaction among working parents in Sabah. In addition, this study also examines the differences of the background of respondents in terms of socio-economic status and the level of education towards parenting satisfaction in Sabah. The study employed purposive sampling survey method with questionnaire. It has been distributed to 210 working parents in various sectors around Kota Kinabalu and Beaufort, Sabah. The set of questionnaire used in this study comprising the Parent Comparison Level Index (PCLI) to measure parental expectation and the Parent Satisfaction Scale (PSS) used to measure parenting satisfaction. The data obtained were analyzed using the IBM SPSS version 23 software through simple regression test and one-way ANOVA test according to the objectives of the study. The results of the analysis showed that parental expectations were significantly and positively influencing parenting satisfaction with a contribution of 34.6 percent variance. Whilst, the difference in education level and socio-economic status of parents shows that there is no difference in parenting satisfaction. In conclusion, higher parenting expectation will lead to higher parenting satisfaction. However, parenting satisfaction is not related to the differences in educational background and socioeconomic status of the parents. The implication of this study is toward parents and the aspect involving parenting satisfaction.
    Matched MeSH terms: Software
  13. Abdul Karim R, Zakaria NF, Zulkifley MA, Mustafa MM, Sagap I, Md Latar NH
    Biomed Eng Online, 2013;12:21.
    PMID: 23496940 DOI: 10.1186/1475-925X-12-21
    Telepointer is a powerful tool in the telemedicine system that enhances the effectiveness of long-distance communication. Telepointer has been tested in telemedicine, and has potential to a big influence in improving quality of health care, especially in the rural area. A telepointer system works by sending additional information in the form of gesture that can convey more accurate instruction or information. It leads to more effective communication, precise diagnosis, and better decision by means of discussion and consultation between the expert and the junior clinicians. However, there is no review paper yet on the state of the art of the telepointer in telemedicine. This paper is intended to give the readers an overview of recent advancement of telepointer technology as a support tool in telemedicine. There are four most popular modes of telepointer system, namely cursor, hand, laser and sketching pointer. The result shows that telepointer technology has a huge potential for wider acceptance in real life applications, there are needs for more improvement in the real time positioning accuracy. More results from actual test (real patient) need to be reported. We believe that by addressing these two issues, telepointer technology will be embraced widely by researchers and practitioners.
    Matched MeSH terms: Software
  14. Abdul Manaf, S.Z., Din, R., Hamdan, A., Mat Salleh, N.S., Kamsin, I.F., Abdul Aziz, J.
    MyJurnal
    At present, the learning activities carried out is in line with the rapid growth of development of technology and lifestyle. ICT literacy is categorised as those who can operate a computer and Internet. This study is conducted to determine the level of computer and Internet literacy in generation Y. A total of ten respondents among university students were interviewed. The level of the skill is measured in terms of the use of information processing systems and the Internet. The new knowledge addresses the themes in information communication technology literacy namely; defining, accessing, assessing, managing, integrating, creating and passing data. As such, the model of computer technology in education can also be produced. A more robust method of learning can be heightened by seeing the level of skills possessed by university students. The findings of this study is expected to determine the level of competence of the students and university can provide the necessary equipment to ensure effective teaching and learning.
    Matched MeSH terms: Software
  15. Abdul Rahim R, Pang JF, Chan KS, Leong LC, Sulaiman S, Abdul Manaf MS
    ISA Trans, 2007 Apr;46(2):131-45.
    PMID: 17367791
    The data distribution system of this project is divided into two types, which are a Two-PC Image Reconstruction System and a Two-PC Velocity Measurement System. Each data distribution system is investigated to see whether the results' refreshing rate of the corresponding measurement can be greater than the rate obtained by using a single computer in the same measurement system for each application. Each system has its own flow control protocol for controlling how data is distributed within the system in order to speed up the data processing time. This can be done if two PCs work in parallel. The challenge of this project is to define the data flow process and critical timing during data packaging, transferring and extracting in between PCs. If a single computer is used as a data processing unit, a longer time is needed to produce a measurement result. This insufficient real-time result will cause problems in a feedback control process when applying the system in industrial plants. To increase the refreshing rate of the measurement result, an investigation on a data distribution system is performed to replace the existing data processing unit.
    Matched MeSH terms: Software*; Software Design
  16. Abdul Rahim Samsudin, Abdul Rahim Harun, Mohd Hariri Arifin, Umar Hamzah, Mokhtar Saidin, M. Shyeh Sahibul Karamah
    Sains Malaysiana, 2012;41:1629-1634.
    An archeological study, conducted by the Archaeological Global Research Centre, Universiti Sains Malaysia shows the evidence of shock metamorphisms (suevite breccia) and crater morphology at Bukit Bunuh in Lenggong area of north Perak, Malaysia. A regional gravity survey focusing at Bukit Bunuh and its surrounding area was conducted to justify the occurrence and to determine the diameter and subsurface geological structure of the Bukit Bunuh impact crater. The gravity survey, using a Scintrex CG5 gravity meter, comprises 476 gravity stations with a 500 m spacing covering an area of approximately 160 km2. The elevation of the gravity stations were obtained by using a pair of Wellace and Tiernan altimeters. The gravity data were corrected for drift, free air, bouguer, latitude and terrain in order to produce a corrected gravity data of the study area. The data were processed and analysed using Oasis Montaj (Geosoft software) to produce bouguer, residual, Total Horizontal Derivative (THD) residual, regional and Total Horizontal Derivative (THD) regional anomaly maps for qualitative and quantitative interpretations. The bouguer gravity map shows relatively low negative anomaly with nearly circular shaped contour around the Bukit Bunuh area. This anomaly was interpreted as the remnant of meteorite impact structure with rounded shaped crater in the study area. The bouguer anomaly map shows that the Bukit Bunuh impact crater has a diameter of approximately 2.5 km. The impact structure was successfully modeled as a complex impact crater with maximum depth of about 300 m. The bouguer anomaly map also showed the possible occurences of at least two more impact craters located in the northeast and southeast areas of the Bukit Bunuh crater and these structures need further investigation for confirmation.
    Matched MeSH terms: Software
  17. Abdul Rahman MB, Karjiban RA, Salleh AB, Jacobs D, Basri M, Thean Chor AL, et al.
    Protein Pept Lett, 2009;16(11):1360-70.
    PMID: 20001926
    The stability of biocatalysts is an important criterion for a sustainable industrial operation economically. T1 lipase is a thermoalkalophilic enzyme derived from Geobacillus zalihae strain T1 (T1 lipase) that was isolated from palm oil mill effluent (POME) in Malaysia. We report here the results of high temperatures molecular dynamics (MD) simulations of T1 lipase in explicit solvent. We found that the N-terminal moiety of this enzyme was accompanied by a large flexibility and dynamics during temperature-induced unfolding simulations which preceded and followed by clear structural changes in two specific regions; the small domain (consisting of helices alpha3 and alpha5, strands beta1 and beta2, and connecting loops) and the main catalytic domain or core domain (consisting of helices alpha6- alpha9 and connecting loops which located above the active site) of the enzyme. The results suggest that the small domain of model enzyme is a critical region to the thermostability of this organism.
    Matched MeSH terms: Software
  18. Abdulazeez Uba Muhammad, Kassim Abdulrahman Abdullah, Waleed Fekry Faris
    MyJurnal
    The best commonly applied approach in seating ergonomics is the concept that the seat must fit the sitter.
    Understanding of population anthropometry is necessary because, in the mass vehicle market, a single seat should fit
    a huge portion of the population. This research work proposes some automotive seat fit parameters based on a
    representative Nigerian anthropometric data, to ensure an optimum fit between the vehicle seats and the occupants,
    as well as providing adequate accommodation. Anthropometric data of 863 Nigerians captured with special emphasis
    on the dimensions that are applicable in automotive seat design. A comparison made between the data obtained and
    that of five other countries. The proposed dimensions includes: seat cushion width (475mm); seat cushion length
    (394mm); seat height (340mm); seat lateral location (583mm); seat back height (480mm); seat back width (427mm);
    armrest height (246mm); headrest height (703mm); armrest surface length (345mm); backrest width (thoracic level)
    (524mm); seat adjustment (186mm); backrest width (lumbar level) (475mm) and distance between armrests
    (475mm). A comparison made between the proposed dimensions and those recommended by four other scholars for
    other populations. Finally, an ergonomic automotive seat suitable for the Nigerian population was designed using
    AutoCAD 2016 software based on the proposed established dimensions.
    Matched MeSH terms: Software
  19. Abdulkader YC, Kamaruddin AF, Mydin RBSMN
    Saudi Dent J, 2020 Sep;32(6):306-313.
    PMID: 32874071 DOI: 10.1016/j.sdentj.2019.09.010
    Objectives: This study compared the effects of normal salivary pH, and acidic pH found in patients with poor oral hygiene, on the durability of aesthetic archwire coated with epoxy resin and polytetrafluoroethylene (PTFE).

    Methods: The posterior parts of the archwires were sectioned into 20 mm segments (N = 102) and divided among six groups. Four groups were treated with different pH levels and two served as controls. The specimens were immersed in individual test tubes containing 10 ml of artificial saliva adjusted to a pH of 6.75 or 3.5. The tubes were sealed and stored in a 37 °C water bath for 28 days. After 28 days, the specimens were ligated to brackets embedded in an acrylic block and subjected to mechanical stress using an electronic toothbrush for 210 s. The specimens were photographed, and images were measured for coating loss using AutoCAD® software. Surface morphology was observed using a scanning electron microscope (SEM).

    Results: Significant coating loss (p 

    Matched MeSH terms: Software
  20. Abdullah A, Deris S, Mohamad MS, Anwar S
    PLoS One, 2013;8(4):e61258.
    PMID: 23593445 DOI: 10.1371/journal.pone.0061258
    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
    Matched MeSH terms: Software*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links